PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pure chitosan microfibres for biomedical applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to its excellent biocompatibility, Chitosan is a very promising material for degradable products in biomedical applications. The development of pure chitosan microfibre yarn with defined size and directional alignment has always remained a critical research objective. Only fibres of consistent quality can be manufactured into textile structures, such as nonwovens and knitted or woven fabrics. In an adapted, industrial scale wet spinning process, chitosan fibres can now be manufactured at the Institute of Textile Machinery and High Performance Material Technology at TU Dresden (ITM). The dissolving system, coagulation bath, washing bath and heating/drying were optimised in order to obtain pure chitosan fibres that possess an adequate tenacity. A high polymer concentration of 8.0–8.5% wt. is realised by regulating the dope-container temperature. The mechanical tests show that the fibres present very high average tensile force up to 34.3 N, tenacity up to 24.9 cN/tex and Young’s modulus up to 20.6 GPa, values much stronger than that of the most reported chitosan fibres. The fibres were processed into 3D nonwoven structures and stable knitted and woven textile fabrics. The mechanical properties of the fibres and fabrics enable its usage as textile scaffolds in regenerative medicine. Due to the osteoconductive properties of chitosan, promising fields of application include cartilage and bone tissue engineering.
Rocznik
Strony
134--140
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Institute of Textile Machinery and High Performance Material Technology (ITM) at TU Dresden Hohe Straße 6, 01069 Dresden, Germany
autor
  • Institute of Textile Machinery and High Performance Material Technology (ITM) at TU Dresden Hohe Straße 6, 01069 Dresden, Germany
autor
  • Institute of Textile Machinery and High Performance Material Technology (ITM) at TU Dresden Hohe Straße 6, 01069 Dresden, Germany
autor
  • Institute of Textile Machinery and High Performance Material Technology (ITM) at TU Dresden Hohe Straße 6, 01069 Dresden, Germany
autor
  • Institute of Textile Machinery and High Performance Material Technology (ITM) at TU Dresden Hohe Straße 6, 01069 Dresden, Germany
autor
  • Institute of Textile Machinery and High Performance Material Technology (ITM) at TU Dresden Hohe Straße 6, 01069 Dresden, Germany
autor
  • Institute of Textile Machinery and High Performance Material Technology (ITM) at TU Dresden Hohe Straße 6, 01069 Dresden, Germany
Bibliografia
  • [1] Muzzarelli, R. A. A., Muzzarelli, C.: Chitosan chemistry: relevance to the biomedical sciences, Advanced Polymer Science, Vol. 186, p. 151–209, 2005.
  • [2] East, G. C. and Qin, Y.: Wet spinning of chitosan and the acetylation of chitosan fibers, Journal of Applied Polymer Science, Vol. 50, p. 1773–1779, 1993.
  • [3] Agboh, O.C. and Qin, Y.: Chitin and chitosan fibres. Polymer Advanced Technology, Vol. 8, p. 355–365, 1997.
  • [4] Hirano, S., Zhang, M., Chung, B. G., Kim S. K.: The N-acylation of chitosan fibre and the N-deacetylation of chitin fibre and chitin-cellulose blended fibre at a solid state, Carbohydrate Polymers, Vol. 41, p. 175-179, 2000.
  • [5] El-Tahlawy, K., Hudson, S. M.: Chitosan: Aspects of fiber spinnability, Journal of Applied Polymer Science, Vol. 100, No 2, p. 1162-1168, 2006.
  • [6] Pillai, C.K.S., Paul, W., Sharma, C. P.: Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Progress in Polymer Science, Vol. 34, No 7, p. 641-678, 2009.
  • [7] Notin, L., Viton, C., David, L., Alcouffe, P., Rochas, P., Domard, A.: Morphology and mechanical properties of chitosan fibers obtained by gel-spinning: Influence of the dry-jet-stretching step and ageing, Acta Biomaterialia, Vol. 2, p. 387-402, 2006.
  • [8] Li, L., Yuan, B., Liu, S., Yu, S., Xie, C., Liu, F., Guo, X., Pei, L., Zhang, B.: Preparation of High force Chitosan Fibers by Using Ionic Liquid as Spinning Solution, Journal of Materials Chemistry, Vol. 22, p. 8585-8593, 2012.
  • [9] Ma, B., Qin, A., Li, X., He, Ch.: High tenacity regenerated chitosan fibers prepared by using the binary ionic liquid solvent (Gly•HCl)-[Bmim]Cl, Carbohydrate Polymers, Vol.97, p. 300-305, 2013.
  • [10] Li, Y., Zhuang, P., Zhang, Y., Wang, Z., Hu, Q.: A new approach for preparing chitosan fibers from a LiOH/urea solvent system, Materials Letters, Vol.84, p. 73-76, 2012.
  • [11] Moutos, F. T., Freed, L. E. and Guilak F.: A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage, nature materials, Vol. 6, p. 162-167, 2007.
  • [12] Tuzlakoglu, K., Alves, C. M., Mano, J. F., Reis R. L.: Production and Characterization of Chitosan Fibers Applications, Macromolecular Bioscience, Vol. 4, p. 811– 819, 2004.
  • [13] Heinemann, C., Heinemann, S., Lode, A., Bernhardt, A., Worch, H., Hanke T.: In Vitro Evaluation of Textile Chitosan Scaffolds for Tissue Engineering using Human Bone Marrow Stromal Cells, Biomacromolecules, Vol. 10, p. 1305–1310, 2009.
  • [14] Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F. A., Zhang M.: Electrospun chitosan-based nanofibers and their cellular compatibility, Biomaterials, Vol. 26, p. 6176– 6184, 2005.
  • [15] Rinaudo, M., Pavlov, G., Desbrières, J.: Influence of acetic acid concentration on the solubilization of chitosan, Polymer, Vol. 40, p. 7029-7032, 1999.
  • [16] Hamdine, M., Heuzey, M.-C., Bégin, A.: Effect of organic and inorganic acids on concentrated chitosan solutions and gels, International Journal of Biological Macromolecules, Vol. 37, p. 134–142, 2005.
  • [17] Rho, J.Y.: Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements, Journal of Biomechanics,Vol. 26, No, p. 111–119, 1993.
  • [18] Shirosaki, Y., Tsuru, K., Satoshi Hayakawa, S., Osaka, A., Lopes, M. A., Santos, J. D. et al.: Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration, Acta Biomaterialia, Vol. 5, p.346–355, 2009.
  • [19] Hild, M.; Jäger, M.; Aibibu, D.; Cherif, Ch.; Hanke, Th.: Three dimensional net-shape-nonwoven chitosan scaffolds for bone tissue engineering applications. In: CD-Rom. 13th World Textile Conference AUTEX 2013, Dresden, 22.-24. Mai 2013
  • [20] Cheng, T.; Hund, R.; Cherif, C.; Aibibu, D.; Horakova, M.: Chitosan and Chitosan Derivative Nanofibers Made by Single Step Electrospinning, Autex Research Journal, Volume 13 (Accepted)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d377010b-7296-4fdf-a8e4-c5068db0fd98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.