PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie procesu oczyszczania powietrza z lotnych związków organicznych; modele jedno- substratowe

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Modelling of the process of air purification from volatile organic compounds; the one-substrate models
Języki publikacji
PL
Abstrakty
PL
Badano efektywność procesu oczyszczania powietrza z octanu winylu, prowadzonego w systemie ciągłej pracy przez około 115 dni w pilotowej instalacji bioreaktora strużkowego (TBB). Bazę danych eksperymentalnych, otrzymanych dla szerokiego zakresu zmian parametrów procesowych, wykorzystano do weryfikacji dwóch jedno-substratowych modeli procesu. Oba proponowane modele aproksymowały dane eksperymentalne z zadowalającą dokładnością.
EN
The effectiveness of the air bio-purification process from vinyl acetate carried out in a pilot-scale trickle-bed bioreactor (TBB) was investigated in a continuous system for about 115 days. The experimental database, obtained for a wide range of changes in process parameters, was exploited to validate the two one-substrate models. Both proposed models approximated experimental data with a satisfactory accuracy.
Rocznik
Tom
Strony
23--42
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
Bibliografia
  • [1] EEA: European Union emission inventory report 1990-2016, under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP), EEA Report No. 6/2018. European Environ- ment Agency. doi:10.2800/571876.
  • [2] Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., Pandey, R., Juwarkar, A., & Vaidya, A. (2010). Bioreactors for treatment of VOCs and odours - a review. Journal of Environmental Management, 91(5), 1039–1054. doi:10.1016/j.jenvman.2010.01.006.
  • [3] Ryu, H. W., Kim, J., Cho, K. S., Jung, D. J., & Lee, T. H. (2004). Biological treatment of air contminated with styrene. In; Proceedings of Better Air Quality (BAQ), Agra, India, 6–8 December 2004. Retrieved from http://www.clearairnet.org/baq2004/1527/article-59320.html.
  • [4] Gąszczak, A., Bartelmus, G., Burghardt, A., Rotkegel, A., & Sarzyński, R. (2018). Experiments and modelling of a biotrickling filter (BTF) for removal of styrene from airstreams. Journal of Chemical Technology and Biotechnology, 93(9), 2659–2670. doi:10.1002/jctb.5620.
  • [5] Gąszczak, A., Bartelmus, G., Burghardt, A., Rotkegel, A. (2019) Experiments and modelling of biodegradation process in trickle-bed bioreactor (TBB): analysis of two-substrate model (TSM) parametric sensitivity (w druku).
  • [6] Greń, I., Gąszczak, A., Szczyrba, E., & Łabużek, S. (2009). Enrichment, isolation and susceptibil- ity profile of the growth substrate of bacterial strains able to degrade vinyl acetate. Polish Journal of Environmental Studies, 18(3), 383–390.
  • [7] Shareefdeen Z, & Baltzis B. C., (1994). Biofiltration of toluene vapor under steady-state and transient conditions: Theory and experimental results. Chemical Engineering Science, 49(24), 4347– 4360. doi:10.1016/S0009-2509(05)80026-0.
  • [8] Mpanias, C. J., & Baltzis, B. C. (1998). An experimental and modeling study on the removal of monochlorobenzene vapor in biotrickling filters. Biotechnology and Bioengineering, 59(3), 328- 343. doi:10.1002/(SICI)1097-0290(19980805)59:3<328::AID-BIT9>3.0.CO;2-D.
  • [9] Hekmat, D., & Vortmeyer, D. (1994). Modelling of biodegradation processes in trickle-bed bioreactors. Chemical Engineering Science, 49(24), 4327–4345. doi:10.1016/S0009-2509(05)80025-9.
  • [10] Diks, R. M. M., & Ottengraf, S. P. P. (1991). Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter. (part I). Bioprocess Engineering, 6(3), 93–99. doi:10.1007/ BF00369061.
  • [11] Diks, R. M. M., & Ottengraf, S. P. P. (1991). Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter. (part II). Bioprocess Engineering, 6(4), 131–140. doi:10.1007/BF00369249.
  • [12] Baltzis, B. C., Mpanias, C.J., & Bhattacharya, S. (2001). Modeling the removal of VOC mixtures in biotrickling filters. Biotechnology and Bioengineering, 72, 389–401. doi:10.1002/1097- 0290(20000220)72:4<389::AID-BIT1001>3.0.CO;2-#.
  • [13] Liao, Q., Tian, X., Chen, R., & Zhu, X. (2008). Mathematical model for gas-liquid two-phase flow and biodegradation of a low concentration volatile organic compound (VOC) in a trickling biofilter. International Journal of Heat and Mass Transfer, 51(7-8), 1780–1792. doi:10.1016/j.ijheatmasstransfer.2007.07.007.
  • [14] Liao, Q., Tian, X., Zhu, X., Chen, R., & Wang, Y. Z. (2008). Measurements and modeling of heat generation in a trickling biofilter for biodegradation of a low concentration volatile organic compound (VOC). Chemical Engineering Journal, 140(1-3), 221–234. doi:10.1016/j.cej.2007.09.043.
  • [15] Gąszczak, A., Bartelmus, G., Greń, I., & Janecki, D. (2018). Kinetics of vinyl acetate biodegradation by Pseudomonas fluorescens PCM 2123. Society of Ecological Chemistry and Engineering, 25(3), 487–502. doi:https://doi.org/10.1515/eces-2018-33.
  • [16] Fan, L.-S., Leyva-Ramos, R., Wisecarver, K. D., & Zehner, B. J. (1990). Diffusion of phenol through a biofilm grown on activated carbon particles in a draft-tube three-phase fluidized-bed bioreactor. Biotechnology and Bioengineering, 35(3), 279–286. doi:10.1002/bit.260350309
  • [17] Bartelmus, G., Kasperczyk, D., Jaroszyński M. (2009). Investigation of mass transfer in the liquid and gas phase for polypropylene Ralu rings. Scientific Papers of the Institute of Polish Academy of Sciences 13, 43-56.
  • [18] Maćkowiak, J. (2011). Model for the prediction of liquid phase mass transfer of random packed columns for gas-liquid systems. Chemical Engineering Research and Design, 89(8), 1308–1320. doi:10.1016/jcherd.2011.01.021.
  • [19] Haynes HW. Jr. (1986) An explicit approximation for the effectiveness factor in porous heterogeneous catalysts. Chemical Engineering Science,41, 412-415.
  • [20] Burghardt A., Kubaczka A. (1996) Generalization of the effectiveness factor for any shape of a catalyst pellet. Chemical and Process Engineering, 35, 65-74.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d376a816-da17-4488-9c86-aad23fdd3fa2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.