Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a comprehensive design and analysis methodology for a Permanent Magnet Linear Synchronous Motor (PMLSM), with a focus on evaluating different inductance modeling approaches. The motor design begins with analytical dimensioning based on defined design parameters. A two-dimensional finite element analysis follows this in ANSYS Maxwell to verify magnetic saturation, back-EMF, flux linkage, and electromagnetic performance under full load conditions. The inductance parameters are calculated using both conventional and look-up table (LUT) based models. In the conventional model, seven different methods are tested under static and dynamic conditions, as well as in non-salient and salient scenarios, and their results are compared. In the LUT model, current-dependent inductance values are extracted from flux linkage maps. The motor designed in Maxwell, along with the calculated inductance data, is integrated into a dynamic cooperative simulation (co-sim) model controlled by an inverter in Simplorer to analyze the thrust force. The results show that the LUT model provides outputs that are closer to the co-sim reference than the traditional model. Furthermore, performance curves based on the Maximum Torque Per Ampere strategy are generated, and the force-speed and power-speed characteristics derived from both inductance models are compared. The findings emphasize the importance of accurate inductance modeling in capturing the actual electromagnetic behaviour of PMLSM under dynamic operating conditions.
Czasopismo
Rocznik
Tom
Strony
773--794
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr., wz.
Twórcy
autor
- Faculty of Technology, Department of Electrical and Electronics Engineering Selçuk University Turkey
autor
- Faculty of Engineering, Department of Electrical and Electronics Engineering Konya Technical University Turkey
autor
- Faculty of Technology, Department of Electrical and Electronics Engineering Selçuk University Turkey
Bibliografia
- [1] Qian J., Zhao C., Pan N., Xie T., Design and performance analysis of permanent magnet linear synchronous motor, Journal of Intelligent & Fuzzy Systems, vol. 40, no. 4, pp. 7811–7818 (2021), DOI: 10.3233/JIFS-189602.
- [2] Krämer C., Kugi A., Kemmetmüller W., Modeling of a permanent magnet linear synchronous motor using magnetic equivalent circuits, Mechatronics, vol. 76, 102558 (2021), DOI: 10.1016/ j.mechatronics.2021.102558.
- [3] Wu L., Lu Q., Optimal Design and Control Simulation of a High-Accelerate Double-Sided Permanent Magnet Linear Synchronous Motor, in 2022 25th International Conference on Electrical Machines and Systems (ICEMS), IE DOI: 10.1109/ICEMS56177.2022.9982976.
- [4] Kim C.-E., Kim B.-C., Kim M.-S., Design and Analysis of the 2-line Perpendicular Permanent Magnet Double-Sided Linear Synchronous Motor to Increase the Thrust/Weight, in 2022 25th International Conference on Electrical Machines and Systems (ICEMS), IEEE, pp. 1–4 (2022), DOI: 10.1109/ICEMS56177.2022.9983423.
- [5] García-Tabarés L., Lafoz M., Torres J., Soriano G., Orient D., Fons D., Analysis of Alternatives for the Acceleration of a Hyperloop System, in Ibero-American Congress of Smart Cities, Springer, pp. 259–271 (2020), DOI: 10.1007/978-3-030-69136-3_18.
- [6] Ma M., Xu Z., Zhang X., Tao W., Zhang Y., W Dq axis inductance calculation for PMLSM considering end effect and magnetic saturation, in 2021 13th International Symposium on Linear Drives for Industry Applications (LDIA), IEEE, pp. 1–5 (2021), DOI: 10.1109/LDIA49489.2021.9505970.
- [7] Li L., Hong J., Wu H., Kou B., Liu R., Direct and quadrature inductances measurement of the permanent magnetic linear synchronous machines, Energy conversion and management, vol. 52, no. 5, pp. 2282–2287 (2011), DOI: 10.1016/j.enconman.2010.12.020.
- [8] Zhang H., Wang Z., Chen M., Shen Z., Yu H., Xu Z., Finite Element Analysis of Electromagnetic Characteristics of a Single-Phase Permanent Magnet Linear Oscillation Actuator, Sensors, vol. 25, no. 2, 452 (2025), DOI: 10.3390/s25020452.
- [9] Shin K.-H., Cho H.-W., Lee S.-H., Choi J.-Y., Armature reaction field and inductance calculations for a permanent magnet linear synchronous machine based on subdomain model, IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1–4 (2017), DOI: 10.1109/TMAG.2017.2665661.
- [10] Cheng Y., Yang J., Huang Q., Characteristics of inductance parameters and thrust linear modeling of PMLSM with combinational iron-cored primary, in 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), IEEE, pp. 142–145 (2011), DOI: 10.1109/CECNET.2011.5768572.
- [11] Shi H. et al., Characteristics Investigation and Dynamic Test of Air-Cored Permanent Magnet Linear Synchronous Motor for null-flux PMEDS Vehicle, IEEE Transactions on Instrumentation and Measurement (2024), DOI: 10.1109/TIM.2024.3406838.
- [12] Lee J.-Y., Hong J., Jang J., Kang D., Calculation of inductances in permanent magnet type transverse flux linear motor, International Journal of Applied Electromagnetics and Mechanics, vol. 20, no. 3–4, pp. 117–124 (2004), DOI: 10.3233/JAE-2004-655.
- [13] Chang L., An improved FE inductance calculation for electrical machines, IEEE Transactions on Magnetics, vol. 32, no. 4, pp. 3237–3245 (1996), DOI: 10.1109/20.508387.
- [14] Kwak S.-Y., Kim J.-K., Jung H.-K., Characteristic analysis of multilayer-buried magnet synchronous motor using fixed permeability method, IEEE Transactions on Energy Conversion, vol. 20, no. 3, pp. 549–555 (2005), DOI: 10.1109/TEC.2005.847973.
- [15] Lee K.-D., Lee J., Lee H.-W., Inductance calculation of flux concentrating permanent magnet motor through nonlinear magnetic equivalent circuit, IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1–4 (2015), DOI: 10.1109/TMAG.2015.2438000.
- [16] Wang H. X., Xu X. Z., Feng H.C., Si J. K., Space State Modeling of Permanent Magnet Linear Synchronous Motor and Inductance Parameters Calculation, Applied Mechanics and Materials, vol. 143, pp. 97–102 (2012), DOI: 10.4028/www.scientific.net/AMM.143-144.97.
- [17] Wang H., Feng H., Xu X., Si J., Modeling Analysis and Parameters Calculation of Permanent Magnet Linear Synchronous Motor, J. Comput., vol. 8, no. 2, pp. 463–470 (2013).
- [18] Zhang Y., Ren W., Ji B., Zhong Z., Hao Y., Zhao J., Electromagnetic Performance of Arc-Linear Permanent Magnet Synchronous Motors with Different Slot/Pole Number Combinations, in 2025 7th Asia Energy and Electrical Engineering Symposium (AEEES), IEEE, pp. 334–338 (2025), DOI: 10.1109/AEEES64634.2025.11019054.
- [19] Isfahani A. H., Analytical framework for thrust enhancement in permanent-magnet (PM) linear synchronous motors with segmented PM poles, IEEE Transactions on Magnetics, vol. 46, no. 4, pp. 1116–1122 (2009), DOI: 10.1109/TMAG.2009.2036993.
- [20] Xu X., Li J., Jiang S., Du B., Ji S., Thrust characteristics analysis and parameter optimization of five-phase U-shaped consequent-pole PMSLM, Journal of Electrical Engineering & Technology, vol. 20, no. 1, pp. 575–589 (2025), DOI: 10.1007/s42835-024-01993-7.
- [21] Sun Z., Ding A., Mao Y., Huang C., Xu W., Improved Adaptive Speed Observer of Permanent Magnet Linear Synchronous Motor with Transient Characteristics, IEEE Journal of Emerging and Selected Topics in Power Electronics (2025), DOI: 10.1109/JESTPE.2025.3535165.
- [22] Zhang W., Lin G., Huang H., Research on Double Side Linear Synchronous Motor Scheme for High Speed Propulsion, in 2025 15th International Symposium on Linear Drivers for Industry Applications (LDIA), IEEE, pp. 1–4 (2025), DOI: 10.1109/LDIA64731.2025.11060310.
- [23] Oğuz K., Çift taraflıhava çekirdekli sabit mıknatıslılineer servo motor tasarımıve uygulaması, MSc Thesis, Graduate School, Dept. of Electrical and Electronics Eng., Pamukkale Univ., Denizli (2021).
- [24] Chevallier S., Markovic M., Jufer M., Perriard Y., Linear motor optimization using an analytical model, Cracow Polland, 5 (2004).
- [25] Gieras J. F., Piech Z. J., Tomczuk B., Linear synchronous motors: transportation and automation systems, CRC press (2018).
- [26] Pyrhonen J., Jokinen T., Hrabovcova V., Design of rotating electrical machines, John Wiley & Sons (2013).
- [27] Jin J., Zhao H., Xin Y., Sun Y., Simulation and analysis of a PMLSM control system based on SVPWM, in Proceedings of the 29th Chinese Control Conference, IEEE, pp. 3316–3320 (2010).
- [28] Soualmi A., Dubas F., Dépernet D., Randria A., Espanet C., Inductances estimation in the dq axis for an interior permanent-magnet synchronous machines with distributed windings, in 2012 XXth International Conference on Electrical Machines, IEEE, pp. 308–314 (2012), DOI: 10.1109/ICElMach.2012.6349882.
- [29] Ertan H. B., Sahin I., Inductance measurement methods for surface-mount permanent magnet machines, IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–16 (2022), DOI: 10.1109/TIM.2022.3225048.
- [30] Zheng L., Jin J., Investigation of HTS bulk magnet linear synchronous motors, in 2009 International Conference on Applied Superconductivity and Electromagnetic Devices, IEEE, pp. 17–21 (2009), DOI: 10.1109/ASEMD.2009.5306701.
- [31] Fitzgerald A. E., Kingsley C., Umans S. D., Electric machinery, McGraw-Hill Book Company (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3751ecc-8b12-4e17-97ee-39fc8ee792ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.