Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study addresses the task of predicting the transformation plasticity induced during pha- se transformation of the 16MND5 carbon steel from austenite to bainite under low externally applied stress using a semi-theoretical model based on the Greenwood-Johnson mechanism. Both models proposed by Leblond et al. (1989) and Taleb and Sidoroff (2003) sufficiently describe the evolution of the TRansformation Induced Plasticity (TRIP) during continuous cooling of the austenitic phase. Nevertheless, TRIP values predicted by these models unde- restimate measured data through the first half of the transformation and overestimate them through the second half. So, we propose in this paper a method to improve Taleb’s model in order to remove discrepancies between theoretical and experimental results throughout the whole transformation and obtain a better description of experimental data.
Czasopismo
Rocznik
Tom
Strony
141--153
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Laboratory of Mechanics, Modeling and Production (LA2MP), ENIS, Sfax, Tunisia
autor
- Laboratory of Mechanics, Modeling and Production (LA2MP), ENIS, Sfax, Tunisia
Bibliografia
- 1. Barbe F., Quey R., Taleb L., Eduardo S.C., 2008, Numerical modelling of the plasticity induced during diffusive transformation. An ensemble averaging approach for the case of random arrays of nuclei, European Journal of Mechanics A, 27, 1121-1139
- 2. Coret M., Calloch S., Combescure A., 2002, Experimental study of the phase transformation plasticity of 16MND5 low carbon steel under multiaxial loading, International Journal of Plasticity, 18, 1707-1727
- 3. Dan W.J., Li S.H., Zhang W.G., Lin Z.Q., 2008, The effect of strain-induced martensitic transformation on mechanical properties of TRIP steel, Materials and Design, 29, 604-612
- 4. Deng D., Murakawa H., 2013, Influence of transformation induced plasticity on simulated results of welding residual stress in low temperature transformation steel, Computational Materials Science, 78, 55-62
- 5. Dutta R.K., Amirthalingam M., Hermans M.J.M, Richardson I.M., 2013, Kinetics of bainitic transformation and transformation plasticity in a high strength quenched and tempered structural steel, Material Science Engineering A, 559, 86-95
- 6. Fischer F.D., Oberaigner E.R., Tanaka K., Nishimura F., 1998, Transformation induced plasticity revised an updated formulation, International Journal of Solids and Structure, 35, 2209-2227
- 7. Hoang H., Barbe F., Quey R., Taleb L., 2008, FE determination of the plasticity induced during diffusive transformation in the case of nucleation at random locations and instants, Computational Materials Science, 43, 101-107
- 8. Leblond J.B., Devaux J., Devaux J.C., 1989, Mathematical modelling of transformation plasticity in steels. I: Case of ideal-plastic phases, International Journal of Plasticity, 5, 551-572
- 9. Leblond J.B., Mottet G., Devaux J.C., 1986, A theoretical and numerical approach to the plastic behaviour of steels during phase transformations: I – Derivation of general relations, Journal of the Mechanics and Physic of Solids, 34, 395-409
- 10. Meftah S., Barbe F., Taleb L., Sidoroff F., 2007, Parametric numerical simulations of TRIP and its interaction with classical plasticity in martensitic transformation, European Journal of Mechanics A, 26, 688-700
- 11. Mohr D., Jacquemin J., 2008, Large deformation of anisotropic austenitic stainless steel sheets at room temperature: multi-axial experiments and phenomenological modeling, Journal of the Mechanics and Physics of Solids, 56, 2935-2956
- 12. Moumni Z., Roger F., Trinh N., 2011, Theoretical and numerical modeling of the thermomechanical and metallurgical behavior of steel, International Journal of Plasticity, 27, 414-439
- 13. Shi J., Turteltaub S., Van der Giessen E., 2010, Analysis of grain size effects on transformation-induced plasticity based on a discrete dislocation transformation model, Journal of the Mechanics and Physics of Solids, 58, 1863-1878
- 14. Song K.J.,Wei Y.H., Dong Z.B., Ma R., Zhan X.H., ZhengW.J., Fang K., 2014, Constitutive model coupled with mechanical effect of volume change and transformation induced plasticity during solid phase transformation for TA15 alloy welding, Applied Mathematical Modeling, 39, 2064-2080
- 15. Sun C., Fang G., Lei L.P., Zeng P., 2009, Micro-thermomechanical constitutive model of transformation induced plasticity and its application on armour steel, Materials Science and Engineering A, 449, 18-22
- 16. Tahimi A., Barbe F., Taleb L., Quey R., Guillet A., 2012, Evaluation of microstructure-based transformation plasticity models from experiments on 100C6 steel, Computational Materials Science, 52, 55-60
- 17. Taleb L., Cavallo N., Waeckel F., 2001, Experimental analysis of transformation plasticity, International Journal of Plasticity, 17, 1-20
- 18. Taleb L., Petit S., Julien J.F., 2004, Prediction of residual stresses in the heat affected zone, Journal de Physique IV, 120, 705-712
- 19. Taleb L., Sidoroff F., 2003, A micromechanicalmodeling of the Greenwood-Johnsonmechanism in transformation induced plasticity, International Journal of Plasticity, 19, 1821-1842
- 20. Yaakoubi M., Kchaou M., Dammak F., 2013a, Simulation of heat treatment and materials with the use of the Abaqus software, Metal Science and Heat Treatment, 55, 7-8
- 21. Yaakoubi M., Kchaou M., Dammak F., 2013b, Simulation of the thermomechanical and metallurgical behavior of steels by using ABAQUS software, Computational Materials Science, 68, 297-306
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3735272-be9a-49fd-a79b-bc0c73a9b81c