PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Demand Changes by the SARS CoV-2 Virus Pandemic in Selected Water Supply Systems - Poland case study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza zmian zapotrzebowania na wodę w kontekście pandemii SARSA CoV-2 w wybranych jednostkach osadniczych w Polsce
Języki publikacji
EN
Abstrakty
EN
This work presents the results of the analysis of changes in water demand for two selected water companies in Poland caused by the SARS-CoV-2 virus pandemic (first wave). Literature that's been published so far has been broadly cited in this work, together with selected evidence collected worldwide. The aim of this article is to evaluate the impact of this type of event on the spatial distribution and variability in water demand using GIS software for two selected samples. The resulting geo-statistical analysis allowed to show areas of greatest variability in water demand using measurements from water meters. In order to achieve this the following research tools developed by ESRI were utilised: "Space Time Cube", "Emerging Hot Spot Analysis" and "Local Outlier Analysis". Indicators of space-time trend were calculated by category using the ArcGIS Pro software. Additionally the knowledge base was expanded with results of a survey conducted in Poland on hundreds of water utilities concerning impacts of the pandemic related changes in how they function, their financial liquidity, threats, and challenges. Interesting conclusions from the obtained results were presented and directions of future research in connection to further development of the situation in the world were considered. Given the lack of possibility to reference events of this type from the past, this analysis should be treated as an introductory research of this issue in Poland.
PL
W pracy przedstawiono wyniki analizy zmienności zapotrzebowania na wodę dla dwóch wybranych przedsiębiorstw wodociągowych w Polsce spowodowanych pandemią wirusa SARS-CoV-2 (pierwsza fala). Omówiono dotychczas opublikowaną literaturę oraz badania w tym zakresie realizowane na całym świecie. Celem artykułu jest ocena wpływu pandemii na rozkład przestrzenny i zmienność zapotrzebowania na wodę, przy wykorzystaniu oprogramowania GIS. Analizę wykonano dla dwóch jednostek osadniczych. Analiza geostatystyczna pozwoliła na wskazanie obszarów o największej zmianie zapotrzebowania na wodę, na podstawie analiza danych pomiarowych z wodomierzy. Do celu realizacji badań wykorzystano następujące narzędzia badawcze w pakiecie oprogramowania ESRI: "Space Time Cube", "Emerging Hot Spot Analysis" i "Local Outlier Analysis". Wskaźniki trendu czasoprzestrzennego obliczono według przy użyciu oprogramowania ArcGIS Pro. Dodatkowo baza wiedzy została poszerzona o wyniki badania przeprowadzonego w Polsce wśród setek przedsiębiorstw wodociągowych, na temat skutków zmian związanych z pandemią na ich funkcjonowanie, płynność finansową oraz zagrożenia i wyzwania związane z tego typu zjawiskami. Zaprezentowano ciekawe wnioski z uzyskanych wyników oraz rozważono kierunki przyszłych badań, w związku z dalszym rozwojem sytuacji na świecie. Ze względu na brak możliwości odniesienia się do tego typu wydarzeń z przeszłości, niniejszą analizę należy traktować jako wstępne badania tego zagadnienia w Polsce.
Rocznik
Tom
Strony
8--17
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering and Energy, Poznan University of Technology, Poznan, Poland
  • Faculty of Environmental Engineering and Energy, Poznan University of Technology, Poznan, Poland
  • bESRI Polska, Warszawa, Poland
Bibliografia
  • [1] Ahmadi H., Argany M., Ghanbari A., Ahmadi M. 2022. "Visualized spatiotemporal data mining in investigation of Urmia Lake drought effects on increasing of PM10 in Tabriz using Space-Time Cube (2004-2019)". Sustainable Cities and Society. 2022; 76: 103399.
  • [2] Abu-Bakar, H., Williams, L., and Hallett, S. H. (2021). "Quantifying the impact of the COVID-19 lockdown on household water consumption patterns in england". Npj Clean Water, 4(1).
  • [3] AWWA (2021). "FREE webinar: COVID-19’s financial impact on water utilities". https://www.awwa.org/Events-Education/Events-Calendar/mid/6794/OccuranceId/392?ctl=ViewEvent
  • [4] Bdl, https://bdl.stat.gov.pl/BDL/dane/podgrup/temat/11/57/3459.
  • [5] Balacco, G., Totaro, V., Iacobellis, V., Manni, A., Spagnoletta, M., and Piccinni, A. F. 2020. "Influence of COVID-19 spread on water drinking demand: The case of puglia region (southern italy)". Sustainability, 12(15), 5919 Number: 15 Publisher: Multidisciplinary Digital Publishing Institute.
  • [6] Berglund, E. Z., Thelemaque, N., Spearing, L., Faust, K. M., Kaminsky, J., Sela, L., Goharian, E., Abokifa, A., Lee, J., Keck, J., Giacomoni, M., van Zyl, J. E., Harkness, B., Yang, Y. C. E., Cunha, M., Ostfeld, A., and Kadinski, L. 2021. "Water and wastewater systems and utilities: Challenges and opportunities during the COVID-19 pandemic". Journal of Water Resources Planning and Management, 147(5), 02521001 Publisher: American Society of Civil Engineers.
  • [7] Bogucka EP, Jahnke M. Mapping historical landscape changes with the use of a space-time cube. Proceedings of the ICA. 2018; 1: 13.
  • [8] Butler, D., Ward, S., Sweetapple, C., Astaraie-Imani, M., Diao, K., Farmani, R., and Fu, G. 2016. "Reliable, resilient and sustainable water management: the safe & SuRe approach" .Global Challenges, 1(1): 63-77 eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/gch2.1010.
  • [9] Clarke, N., Smith, R., Alda-Vidal, C., Hoolohan, C., and Browne, A. L. 2021. "Changing water use under Covid-19: Understanding changes in the anglian water region".
  • [10] Cotterill, S., Bunney, S., Lawson, E., Chisholm, A., Farmani, R., and Melville-Shreeve, P. 2020. "COVID-19 and the water sector: understanding impact, preparedness and resilience in the UK through a sector-wide survey". Water and Environment Journal, 34(4): 715-728 eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/wej.12649.
  • [11] Cooley, Heather, Gleick, Peter H.; Abraham, Sonali, Cai, Wenjia, "Water and the COVID-19 Pandemic: Impacts on Municipal Water Demand". Não convencional em Inglês | Homeland Security Digital Library, Literatura cinzenta | ID: grc-740056.
  • [12] Dzimińska, P., Drzewiecki, S., Ruman, M., Kosek, K., Mikołajewski, K., Licznar, P. 2021. "The Use of Cluster Analysis to Evaluate the Impact of COVID-19 Pandemic on Daily Water Demand Patterns". Sustainability, 13, 5772. https://doi.org/10.3390/su13115772.
  • [13] ESRI a. "Esri CovidPulse - united states novel coronavirus trend lines, since march". https://livingatlas.arcgis.com/covidpulse/.
  • [14] ESRI b. "How emerging hot spot analysis works" https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoreemerging.htm.
  • [15] ESRI c.Tool outputs, https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern mining/learnmorelocaloutlier.htm.
  • [16] Geoportal. "Geoportal" .https://mapy.geoportal.gov.pl.
  • [17] Geraghty, E. 2020. "Słowackie testowanie na COVID-19 - wzrost wydajności dzięki aplikacji mapowej". .https://www.arcanagis.pl/slowackie-testowanie-na-covid-19-wzrost-wydajnosci-dzieki-aplikacji-mapowej.
  • [18] Harris N. L., Goldman E., Gabris C., Nordling J., Minnemeyer S., Ansari S., et al. 2017. "Using spatial statistics to identify emerging hot spots of forest loss". Environ Res Lett. IOP Publishing. 12: 024012.
  • [19] Haque, M. M., Egodawatta, P., Rahman, A., and Goonetilleke, A. 2015. "Assessing the significance of climate and community factors on urban water demand". International Journal of Sustainable Built Environment, 4(2): 222-230.
  • [20] Nicholas, B. Irwin, Shawn J. McCoy, and Ian K. McDonough. 2021. "Water in the time of corona(virus): The effect of stay-at-home orders on water demand in the desert". J Environ Econ Manage. 2021 Sep; 109: 102491.
  • [21] Kalbusch, A., Henning, E., Brikalski, M. P., de Luca, F. V., and Konrath, A. C. 2020. "Impact of coronavirus (COVID-19) spread-prevention actions on urban water consumption". Resources, Conservation and Recycling, 163, 105098.
  • [22] Lüdtke, D. U., Luetkemeier, R., Schneemann, M., and Liehr, S. 2021. "Increase in daily household water demand during the first wave of the covid-19 pandemic in germany". Water, 13(3), 260.
  • [23] Mo C, Tan D, Mai T, Bei C, Qin J, Pang W, et al. 2020. "An analysis of spatiotemporal pattern for COIVD-19 in China based on space-time cube". Journal of Medical Virology (92): 1587-95.
  • [24] Mofijur, M., Fattah, I. R., Alam, M. A., Islam, A. S., Ong, H. C., Rahman, S. A., Najafi, G., Ahmed, S., Perrone, J. 2020. "How coronavirus changed gardening forever: The pandemic has created a new generation of enthusiasts who have found growing is good for the soul". Finalcial Times.
  • [25] Pingyu F., Chun K. P., Mijic A., Tan M. L., Yetemen O. 2022. "Integrating the Budyko framework with the emerging hot spot analysis in local land use planning for regulating surface evapotranspiration ratio". Journal of Environmental Management [Internet]. Elsevier; [cited 2022 Jun 23]; 316. Available from: https://uwe-repository.worktribe.com/output/9438583/integrating-the-budyko-framework-with-emerging-hot-spot-analysis-in-local-land-use-planning-for-regulating-surface-evapotranspiration-ratio.
  • [26] Pribadi D. O., Saifullah K., Putra A. S., Nurdin M., Iman L. O. S., Rustiadi E. 2021. "Spatial analysis of COVID-19 outbreak to assess the effectiveness of social restriction policy in dealing with the pandemic in Jakarta". Spat Spatiotemporal Epidemiol (39): 100454.
  • [27] RNZ. 2021. "Auckland would be under water restrictions if it weren’t for the covid-19 lockdown". https://www.rnz.co.nz/news/national/413616/auckland-would-be-under-water-restrictions-if-itweren-t-for-the-covid-19-lockdown. Section: New Zealand.
  • [28] Roidt, M., Chini, C. M., Stillwell, A. S., and Cominola, A. 2020. "Unlocking the impacts of COVID-19 lockdowns: Changes in thermal electricity generation water footprint and virtual water trade in europe". Water International, 7(9): 683-689 Publisher: American Chemical Society.
  • [29] Rondinel-Oviedo, D. R. and Sarmiento-Pastor, J. M. 2020. "Water: consumption, usage patterns, and residential infrastructure. a comparative analysis of three regions in the lima metropolitan area". Water International, 45(7-8): 824-846.
  • [30] Sharmina, M., Ghanem, D. A., Browne, A. L., Hall, S. M., Mylan, J., Petrova, S., and Wood, R. (2020). "Envisioning surprises: How social sciences could help models represent ‘deep uncertainty’ in future energy and water demand". Energy Research & Social Science (50): 18-28.
  • [31] Sivakumar, B. 2020. "COVID-19 and water". Stochastic Environmental Research and Risk Assessment, 35(3), 531-534.
  • [32] Sohrabi, C., Alsafi, Z., O'Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., and Agha, R. 2020. "World health organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19)". International Journal of Surgery, 76, 71-76.
  • [33] WatEner. "Water consumption and demand forecasting during COVID-19 crisis". WatEner, http://watener.com/index.php/water-consumption-and-demand-forecasting-during-covid-19-crisis.
  • [34] Xu B., Qi B., Ji K., Liu Z., Deng L., Jiang L. Emerging hot spot analysis and the spatial-temporal trends of NDVI in the Jing River Basin of China. Environ Earth Sci. 2022; 81: 55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d36ffe57-df77-4b88-9944-d3bc7a2dee31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.