Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Integrated removal of S02, NOx and Hg in the wet flue gas desulphurization systems
Języki publikacji
Abstrakty
W pracy przedstawiono badania nad zintegrowanym oczyszczaniem spalin z dwutlenku siarki, tlenków azotu i rtęci w układach mokrego odsiarczania spalin, które przeprowadzono w skali laboratoryjnej i pilotowej. Wykazano także, że klasyczne układy mokrego odsiarczania spalin zasilane zawiesiną węglanu wapnia mogą pełnić rolę zintegrowanego absorbera, usuwającego nie tylko dwutlenek azotu, lecz także tlenki azotu i rtęć po przeprowadzeniu zabiegów polegających na konwersji nierozpuszczalnego monotlenku azotu znajdującego się w spalinach do rozpuszczalnej formy dwutlenku azotu lub też wyższych form, a także konwersji rtęci metalicznej do formy rozpuszczalnej. Celem badań było dogłębne poznanie i zbadanie procesów zachodzących w zintegrowanym absorberze, które umożliwiłyby zrozumienie mechanizmów usuwania zanieczyszczeń oraz określenie wpływu kluczowych parametrów na przebieg i sprawność tego procesu. Określono więc wpływ: stężeń stosowanych reagentów, stężeń dwutlenku siarki w gazach wyjściowych, stężeń tlenków azotu w gazach wyjściowych, odczynu zawiesiny reakcyjnej, temperatury, miejsca iniekcji roztworu chlorynu sodu w układzie oczyszczania spalin, utworzenia tzw. strefy odsiarczania i utleniania w absorberze kolumnowym z wymuszonym napowietrzaniem, czasu kontaktu gaz-reagent. Ponadto określono rolę, jaką pełnią dwutlenek siarki i jony siarczanowe(IV) i wodorosiarczanowe(IV) w mechanizmie oczyszczania spalin. Zbadano także reemisję rtęci i dwutlenku chloru ze zintegrowanego absorbera zasilanego zawiesiną węglanu wapnia i chlorynu sodu.
This monograph presents the lab- and pilot-scale research on the integrated control of sulphur dioxide, nitrogen oxides and mercury in the wet flue gas desulphurization systems. It is demonstrated that the classical wet limestone scrubbers could be efficient in a removal of sulphur dioxide, nitrogen oxides and mercury simultaneously after the proper modification of chemical processes in the scrubber, which are mainly based on nitrogen oxides and elemental mercury oxidation. The monograph presents the research focusing on better understanding the pollutant removal processes and indicating the key parameters affecting the pollutant removal efficiencies in the integrated scrubber. A series of experiments were performed to evaluate the effect of the most important parameters present in a flue gas cleaning systems on pollutant removals. The following parameters were under study: the effect of reagent concentrations; the effect of initial sulphur dioxide and nitrogen oxides concentrations in flue gas; the pH of reaction medium; temperature; the place of the oxidant injection in the flue gas system; creation of an oxidation and absorption zones in a wet tower working under forced oxidation mode; the effect of reagent-gas contact time. Moreover, the role which the sulfite/bi-sulfite ions may play in a total removal mechanism, and the chlorine dioxide and mercury reemission from the wet integrated absorber were investigated, too.
Czasopismo
Rocznik
Tom
Strony
140--140
Opis fizyczny
Bibliogr. 218 poz., tab., rys.
Twórcy
autor
- Instytut Klimatyzacji i Ogrzewnictwa, Wydział Inżynierii Środowiska, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław.
Bibliografia
- 1. Adewuyi Y.G., He X., Shaw H., Lolertpihop W., 1999, Simultaneous absorption and oxidation of NO and SO2 by aqueous solutions of sodium chlorite, Chem. Eng. Comm., (174), 21-51.
- 2. American Society for Testing and Materials International, 2002, ASTM Standard D6784-02, Standard Test Method for Elemental, Oxidized, Particle-Bound and Total Mercury in Flue Gas Generated from Coal-Fired Stationary Sources (Ontario Hydro Method), ASTM International, West Consho-hocken, PA, DOI: DOI: 10.1520/D6784-02, http:// astm.org [dostęp 04.03.12].
- 3. Ando J., 1976, SO2 and NOx removal technology in Japan-1976, Environmental Technical Information Center, Japan Management Association.
- 4. Basyda K., Lewandowski J., 2008, Uwarunkowania rozwoju w Polsce energetyki wykorzystującej węgiel, Energetyka, (3), 167-175.
- 5. Bell M.L., Lee D., Davis D., 2001, Reassessment of the Lethal London Fog of 1952: Novel Indicators of Acute and Chronic Consequences of Acute Exposure to Air Pollution, Environ. Health Perspect., (109), 389-394.
- 6. Benson S.A., Laumb J.D., Crocker C.R., Pavlish J.H., 2005, SCR catalyst performance in flue gases derivedfrom subbituminous and lignite coals, Fuel Process. Tech., 86(5), 577-613.
- 7. Berglind N., Bellander T., Forastiere F., von Klot S., Aalto P., Elosua R., Kulmala M., Lanki T., Lowel H., Peters A., Picciotto S., Salomaa V., Stafoggia M., Sunyer J., Nyberg F., 2009, HEAPSS Study Group. Ambient air pollution and daily mortality among survivors of myocardial infarction, Epidemiology, 20(1), 110-118.
- 8. Boogaard P.J., Houtsma A.T., Joumee A.J., Sittert H.L., Van N.J., 1996, Effects of exposure to elemental mercury on the nervous system and the kidneys of workers producing natural gas, Arch. Environ. Health, 51(2), 108-115.
- 9. Blythe G., DeBerry D., Marsh B., Paradis J., Range J., Rhudy R., 2004, Bench-Scale Evaluation of the Fate of Mercury in Wet FGD Systems, presented in the Combined Power Plant Air Pollutant Control Mega Symposium, Washington, DC, Aug. 30—Sept., 2004.
- 10. Boyle P.D., 2005, Multi-Pollutant Control Technology for Coal-Fired Power Plants, Proceedings of the Clean Coal and Power Conference, Washington, DC November 21-22, 2005.
- 11. Boyle P.D., 2004, Operation of 50-MW ECO Commercial Demonstration Unit at First Energy’s R.E. Burger Plant, Presented at the Electric Power 2004, Baltimore, MD, March 2004.
- 12. BP, 2011, BP Energy Outlook 2030. 60 years. BP Statistical Review - booklet. London, January 2011.
- 13. Brandon K., Beggan M., Allen P., Butler F., 2009, The performance of several oxygen scavengers in varying oxygen environments at refrigerated temperatures: implications for low-oxygen modified atmosphere packaging of meat, Int. J. Food Sci. Technol., (44), 188-196.
- 14. Brogren C., Karlsson H.T.I., Bjerle I., 1998, Absorption of NO in an Aqueous Solution ofNaCl02, Chem. Eng. Tech., (21), 61-70.
- 15. Brogren C., Karlsson H.T., Bjerle I., 1997, Absorption of NO in an alkaline solution of KMn04, Chem. Eng. Tech., 20(6), 396-402.
- 16. Brunekreef B., Holgate S.T., 2002, Review. Air pollution and health, The Lancet, 360, 1233-1242
- 17. Buitrago P.A., Silcox G.D., Senior C.L., Otten B.V., 2010, Analysis of Halogen-Mercury Reactions in Flue Gas, Final Technical Report University of Utah, DE-FG26-06NT42713.
- 18. Canadian Council Of Ministers Of The Environment, 2005, Technical Review Of Mercury Technology Options For Canadian Utilities - A Report to The Canadian Council of Ministers of the Environment, http://www.cme.ca/assets/Pdf7Hg_Eerc_Rpt_Es_E.Pdf [dostęp 2 kwietnia 2012].
- 19. Chang J., Ghorishi B., 2003, Simulation and Evaluation of Elemental Mercury Concentration Increase in Flue Gas across a Wet Scrubber, Environ. Sci. Tech., 37(24), 5763-5766.
- 20. Chang J., Ghoroshi B., 2003a, Why Flue Gas Elementary Mercury Concentration Increases Across a Wet Scrubber, Proceedings of the Combined Utility Air Pollutant Control Symposium: The MEGA Symposium, Washington, DC, May 19-21, 2003.
- 21. Chang J.C.S., Zhao Y., 2008, Pilot plant testing of elemental mercury reemission from a wet scrubber, Energ. Fuel., 22(1), 338-342.
- 22. Chang S.G., Pham E., Litilejohn D.I., Shi Y., 1994, Development of a metal chelate additive for use in wet limestone systems to remove simultaneously S02 and NOxfrom flue gas, [in:] Proc. Tenth Annual Coal Preparation, Utilization, and Environmental Control Contractors Conference, (940780-1) 206-214, Pittsburgh, Pennsylvania, July 18-21, 1994.
- 23. Chen D., Martell A.E., McManus D., 1995, Studies on the mechanism of chelate degradation in iron-based, liquid redox H2S removal processes, Can. J. Chem., 73, 264—274.
- 24. Chen L., Hsu C.H., Yang C.L., 2005, Oxidation and Absorption of Nitric Oxide in a Packed Tower with Sodium Hypochlorite Aqueous Solutions, Environ. Prog., 24(3), 279-288.
- 25. Chen Y., Craig L., Krewski D., 2008, Air quality risk assessment and management, J. Toxicol. Environ. Health - Part A: Current Issues, 71(1), 24-39.
- 26. Cheng C.M., Chang Y.N., Sistani K.R., Wang Y.W., Lu W.C., Lin C.W., Dong J.H., Hu C.C., Pan W.P. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials, J. Air Waste Manage. Assoc., 62(2), 139-150.
- 27. Chien T.W., Chu H., 2000, Removal of S02 and NO from flue gas by wet scrubbing using an aqueous NaCl02 solution, J. Hazard. Mater., (B80), 43-57.
- 28. Chien T.W., Hsueh H.T., Chu B.Y., Chu H., 2009, Absorption kinetics of NO from simulated flue gas using Fe(II)EDTA solutions, Process. Saf. Environ. Protect. (87), 300-306.
- 29. Chien T.W., Chu H., Li Y.C., 2005, Absorption Kinetics of Nitrogen Oxides Using Sodium Chlorite Solutions in Twin Spray Columns, Water Air Soil Pollut., 166(1—4), 237—250.
- 30. Chien T.W., Chu H., Hsueh H.T., 2003, Kinetic study on absorption of S02 and NOx with acidic NaCl02 solutions using the spraying column, J. Environ. Eng., 129(11), 967—974.
- 31. Chirona R.J., Altshuler B., 1999, Chemical Aspects ofNOx scrubbing, Pollut. Eng., (31), 32-37.
- 32. Chmielewski A.G., Ostapczuk A., Licki J., 2010, Electron beam technology for multipollutant emissions control from heavy fuel oil-fired boiler, J. Air Waste Manage. Assoc., 62(8), 932-938.
- 33. Chmielewski A.G., Tymiński B., Pawelec A., 2005, Usuwanie NOx i S02 przy użyciu wiązki elektronów, Ekologia, (6), 33-34.
- 34. Chu H., Li S.Y., Chien T.W., 1998, The absorption kinetics of NO from flue gas in a stirred tank reactor with KMnO^/NaOH solutions, J. Environ. Sci. Health Environ. Sci. Eng., 33(5), 801-827.
- 35. Chu H., Chien T.W., Twu B.W., 2001, The absorption kinetics of NO in NaCl02/Na0H solutions, J. Hazard. Mater., (B84), 241-252.
- 36. Chu H., Chien T.W., Li S.Y., 2001a, Simultaneous absorption of S02 and NO from flue gas with KMnO^aOHsolutions, The Sci. Total Environ., (257), 127-135.
- 37. Confuorto N., 2007, Testing the technology, Hydrocarbon Engineering, 12(10), 53-58.
- 38. Cooper C.D., Clausen III C.A., Pettey L., Collins M.M., De Fernandez M.P., 2002, Investigation of ultraviolet light-enhancedH202 oxidation ofNOx emissions, J. Environ. Eng., 128(1), 68-72.
- 39. Decanini E., Nardini G., Paglianti A., 2000, Absorption of nitrogen oxides in columns equipped with low-pressure drops structured packings, Ind. Eng. Chem. Res., (39), 5003-5011.
- 40. De Nevers N., 2000, Air Pollution Control Engineering, second Edition, McGraw-Hill series in Water Resources And Environmental Engineering, 2000.
- 41. Departament Inspekcji i Orzecznictwa, 2009, Główny Inspektor Ochrony Środowiska, Informacja o stanie realizacji przez użytkowników środowiska obowiązków wynikających z prawa UE, których termin wejścia w życie dla Polski określony został w Traktacie Akcesyjnym w obszarze środowisko naturalne, pozostających w kompetencjach Inspekcji Ochrony Środowiska, Warszawa, maj 2009.
- 42. Deshwal B.R., Joe H.D., Lee H.K., 2004, Reaction kinetics of decomposition of acidic sodium chlorite, Can. J. Chem. Eng., 82(3), 619-623.
- 43. Deshwal B.R., Lee H.K., 2004, Kinetics and mechanism of chloride based chlorine dioxide generation process from acidic sodium chlorate, J. Hazard. Mater. B108, 173-182.
- 44. Deshwal B.R., Lee H.K., 2004a, Variation in C102/C12 ratio in chloride-chlorate process under different conditions, J. Ind. Eng. Chem., 10(4), 667-673.
- 45. Deshwal B.R., Lee H.K., 2005, Manufacture of chlorine dioxide from sodium chlorite: Process chemistry, J. Ind. Eng. Chem. Eng., (1), 125-136.
- 46. Deshwal B.R., Lee S.H., Jung J.H., Shon B.H., Lee H.K., 2008, Study on the Removal of NOx from Simulated Flue Gas Using Acidic NaCl02 Solution, J. Environ. Sci., 20(1), 33-38.
- 47. Diaz-Somano M., Unterberger S., Hein K.R.G., 2007, Mercury Emission Control in Coal-Fired Power Plants: The Role of Wet Scrubbers, Fuel Process. Tech., (88), 259-263.
- 48. Dora J., Gostomczyk M.A., Jakubiak M., Kordylewski W., Mista W., Tkaczuk M., 2009, Parametric studies of the effectiveness of oxidation of NO by ozone, Chem. Process Eng., 30(4), 621-634.
- 49. Elliott P., Hartenstein H., Riethmann T., Vosteen B.W., 2010, Novel mercury control strategy utilizing wet FGD in power plants burning low chlorine coal, Air and Waste Management Association, 8th Power Plant Air Pollutant Control Mega Symposium, 2010 (3), 1901-1932.
- 50. Ellison W., 2003, Chemical process techniques for simultaneous NOx removal in existing FGD installations, DOE/NETL 2003 Conference on Selective Catalytic Reduction and Non-Catalytic Reduction for NO* Control, Pittsburgh, PA, October 29-30, 2003.
- 51. European Environment Agency, 2012, Energy-related emissions of acidifying substances (ENER 006), Assessment published Apr. 2012. http://www.eea.europa.eu/data-and-maps/indicators/ [dostęp 5 maja 2012].
- 52. European Environment Agency, 2012a, Sulphur dioxide S02 emissions (APE 001) (APE 001), Assessment published Dec 2011. http://www.eea.europa.eu/data-and-maps/indicators/ [dostęp 3 kwietnia 2012].
- 53. European Environment Agency, 2011, Emissions from public electricity and heat production - explanatory indicators (ENER 009) (ENER 009), Assessment published Aug 2011. http://www.eea.europa.eu/ data-and-maps/indicators/ [dostęp 3 kwietnia 2012].
- 54. Fabian I., Szucs D., Gordon G., 2000, Unexpected Phenomena in the Mercury(II)-Chlorite Ion System: Formation and Kinetic Role of the HgCl02 Complex, J. Phys. Chem. A. (104), 8045—8049.
- 55. Felsvang K., Lund C., Kumar S., Bechoux E., Hoffman D., 2001, Mercury Reduction Control Options, Proceedings of the U.S. EPA-DOE-EPRI Combined Power Plant Air Pollutant Control Symposium: The MEGA Symposium and The A & WMA Specialty Conference on Mercury Emissions: Fate, Effects, and Control, Chicago, IL, August 20-23, 2001.
- 56. Free World Academy, 2005, Global Trends 2030. The World In 2030, Summary: Mapping The World-2030: Revision 2005. http://www.freeworldacademy.com [dostęp 3 kwietnia 2012].
- 57. Galbreath K.C., Zygarlicke C.J., 1996, Mercury speciation in coal combustion and gasification flue gases, Environ. Sci. Tech., 30(8), 2421-2426.
- 58. Gambardella F., 2005, Ph.D. thesis: NO and 02 Absorption in Aqueous Fen(EDTA) Solutions, University of Groningen.
- 59. Ghorishi S.B., Singer C.F., Jozewicz W.S., Sedman C.B., Srivastava R.K., 2002, Simultaneous Control of Hg°, S02, and NOx by Novel Oxidized Calcium-Based Sorbents, J. Air & Waste Manage. Assoc., 52, 174—185.
- 60. Głomba M., 2010, Technical description ofparameters influencing the pH value of suspension absorbent used in flue gas desulfurization systems, J. Air & Waste Manage. Assoc., 60(8), 1009-1016.
- 61. Główny Urząd Statystyczny, 2010, Ochrona Środowiska 2010, Warszawa 2010.
- 62. Gostomczyk M.A., Krzyżyńska R., 2006, Multi-pollutant control from pulverized coal-fired boiler OP-430, Proceedings of the EPA-DOE-EPRI-A and JAWMA Power Plant Air Pollutant Control Mega Symposium 2006, (3), 1162-1176.
- 63. Gostomczyk M.A., Oryszczak J., The reduction of nitrogen oxides emission in the installations of S02 removal, Inż. Chem. Proc., 25(4), 2153-2160.
- 64. Granite E.J., Pennline H.W., 2002, Photochemical Removal of Mercury from Flue Gas, Ind. Eng. Chem. Res., (41), 5470-5476.
- 65. Greather London Authority, 2002, 50 years on the struggle for air quality in London since the great smog of December 1952, Mayor of London, 1—34.
- 66. Grochowalski A., Konieczyński J., 2008, PCDDs/PCDFs, dl-PCBs and HCB in the flue gas from coal fired CFB boilers, Chemosphere, 73(1), 97-103.
- 67. Gu Y., Chen C.C., 2008, Eliminating the interference of oxygen for sensing hydrogen peroxide with the polyaniline modified electrode, Sensors, (8), 8237-8247.
- 68. Gullett B.K., Ghorishi S.B., Keeney R., Huggins F.E., 2000, Mercuric Chloride Capture By Alkaline Sorbents, Presented at AWMA Conference, Salt Lake City, Utah, 6/18-22/2000.
- 69. Guo R.T., Gao X., Pan W.G., Ren J.X., Wu J., Zhang X.B., 2010, Absorption of NO into NaClO/NaOH polutions in a stirred tank reactor, Fuel, (89), 3431-3435.
- 70. Guxens M., Sunyer J., 2012, A review of epidemiological studies on neuropsychological effects of air pollution, Swiss Medical Weekly, (141), w 13322
- 71. Hammel C.F., Boren R.M., Harris L.E., Bleckinger M.R., 2005, NO» S02, and mercury multi-pollutant pilot test results and technical process updates for the Pahlman process ™ technology, 2005. Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA 2005.
- 72. Haywood J.M., Cooper D.C., 1998, The Economic Feasibility of Using Hydrogen Peroxide for the Enhanced Oxidation and Removal of Nitrogen Oxides from Coal-Fired Power Plant Flue Gases, J. Air & Waste Manage. Assoc., (48), 238-246.
- 73. Henzel D.S., Laseke B.A., Smith E.O., Swenson D.O., 1981, Limestone FGD Scrubbers:User’s Handbook, U.S. EPA Handbook: EPA-600/8-81-017.
- 74. Hewitt D., 1956, Mortality in the London boroughs, 1950-52, with special reference to respiratory disease, Brit. J. Prev. Soc. Med., (10), 45-57.
- 75. Hofele J., van Helzen D., Langenkamp H., Schaber K., 1996, Absorption of NO in aqueous solution of Fen(NTA): determination of the equilibrium constant, Chem. Eng. Proc., 35, 295-300.
- 76. Hong C.C., Lenzi F., Rapson W.H., 1967, The kinetics and mechanism of the chloride-chlorate reaction, Can. J. Chem. Eng., (45), 349-355.
- 77. Hou L., Zhang X., Wang D., Baccarelli A., 2012, Environmental chemical exposures and human epige-netics, Int. J. Epidemiol., 41(1), 79-105.
- 78. Hsu H.W., Lee C.J., Chou K.S., 1998, Absorption of no by NaCl02 solution: Performance characteristics, Chem. Eng. Comm., (170), 67-81.
- 79. Hutson N.D., Chang J.C.S., Zhao Y., Krzyżyńska R., 2010, Pilot-scale study of a wet scrubber system for control of S02, NOx, and Hg in coal combustion flue gas, Air and Waste Management Association, 8th Power Plant Air Pollutant Control Mega Symposium, 2010 (4), 2754-2766.
- 80. Hutson N.D., Krzyżyńska R., Srivastava R.K., 2008, Simultaneous removal of S02, NOx and Hg from coal flue gas using a NaCl02-enhanced wet scrubber, Ind. Eng. Chem. Res., (47), 5825-5831.
- 81. Hutson N.D., Atwood B.C., 2008, Binding of vapour-phase mercury (Hg°) on chemically treated bauxite residues (red mud), Environ. Chem., (5), 281-288.
- 82. Hutson N.D., Ryan S.P., Touati A., 2009, Assessment of PCDD/F and PBDD/F emissions from coal-fired power plants during injection ofbrominated activated carbon for mercury control, Atmos. Environ., 43(26), 3973-3980.
- 83. Hutson N.D., 2008, Mercury Capture on Fly Ash and Sorbents: The Effects of Coal Properties and Combustion Conditions, Water Air Soil Poll.: Focus, (8), 323-331.
- 84. Institute of Clean Air Companies, 1997, Selective Catalytic Reduction Committee White Paper: Selective Catalytic Reduction (SCR) Control ofNOx Emissions, Washington, DC, 1997.
- 85. International Energy Agency (IEA), 2010, World Energy Outlook 2010, Paris, France, 2010.
- 86. Jakubiak M., Kordylewski W., 2010, Effectiveness ofNOx removal from gas via preoxidation of NO with ozone and absorption in alkaline solutions, Chem. Process. Eng., (31), 699—709.
- 87. Jin D.S., Deshwal B.R., Park Y.S., Lee H.K., 2006, Simultaneous Removal ofS02and NO by Wet Scrubbing Using Aqueous Chlorine Dioxide Solution, J. Hazard. Mater., (B135), 412—417.
- 88. Jing G.H., Li W., Shi, Y., 2007, Oxidation reduction process of complex absorbent in the system of nitrogen removal from flue gas, China Environmental Science, 27 (1), 132-136.
- 89. Kampa M., Castanas E., 2008, Human health effects of air pollution, Environ. Pollut., (151) 362-367.
- 90. Kancelaria Senatu, 2010, Sprawozdanie nr 48/2010. Sesja Parlamentu Europejskiego, Strasburg, 5-8 lipca 2010, Bruksela, dnia 14 lipca 2010 r.
- 91. KASHUE (Krajowy Administrator Systemu Handlu Uprawnieniami do Emisji) - KOBIZE (Krajowy Ośrodek Bilansowania i Zarządzania Emisjami), 2008, Raport Inwentaryzacja emisji do powietrza S02, NOx, CO, NH3, pyłów, metali ciężkich, NMLZO i TZO w Polsce za rok 2008.
- 92. Kasper J.M., Clausen C.A. III, Cooper C.D., 1996, Control of nitrogen oxide emissions by hydrogen peroxide-enhanced gas-phase oxidation of nitric oxide, J. Air & Waste Manage. Assoc., 46(2), 127-133.
- 93. Komiyama H., Inoue H., 1978, Reaction and transport of nitrogen oxides in nitrous acid solutions, J. Chem. Eng. Japan, 11 (1), 25-32.
- 94. Konieczyński J., 2004, Ochrona powietrza przed szkodliwymi gazami. Metody, aparatura i ainstalacje, Wydawnictwo Politechniki Śląskiej, Gliwice.
- 95. Korell J., Seifert H., Paur H.-R., Andersson S., Bolin P., 2003, Flue Gas Cleaning with the MercOx Process, Chem. Eng. Tech., 26(7), 737-740.
- 96. Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, 2011, Raport: Krajowa inwentaryzacja emisji S02, NOx, CO, NH3, NMLZO, pyłów, metali ciężkich i TZO za lata 2008-2009 w układzie klasyfikacji SNAP i NFR.
- 97. Krzyżyńska R., Hutson N.D., 2012, Effect of Solution pH on S02, NO„ and Hg. Removals from Simulated Coal Combustion Flue Gas in an Oxidant-enhanced Wet Scrubber, J. Air & Waste Manage. Assoc., 62(2), 212-220.
- 98. Krzyżyńska R., Hutson N.D., 2012a, The Importance of The Location of Sodium Chlorite Application in a Multi-Pollutant Flue Gas Cleaning System, J. Air Waste Manage. Assoc., 62(6), 707-716.
- 99. Krzyżyńska R., Hutson N.D, Zhao Y., 2009, Multipollutant conrol using a wet scrubber in coal flue gas, Presentation at the 12th Annual Energy & Environment Conference & Expo. Feb. 2-4, 2009, Phoenix, Arizona.
- 100. Krzyżyńska R., Zhao Y., Hutson N.D., 2011, Bench- and pilot-scale investigation of integrated removal of sulphur dioxide, nitrogen oxides and mercury in a wet limestone scrubber, Rocz. Ochr. Srod., 13(1), 29-50.
- 101. Krzyżyńska R., Zhao Y., Nick N.D., Hutson N.D., 201 la, Integrated Removal of S02, NOx and Hgfrom Simulated Coal-Fired Flue Gas Desulphurization Systems (WFGD), Proceedings of the Fifth International Conference on Clean Coal Technologies CCT2011, 8-12 May, 2011, Zaragoza, Spain, 1-9. Osiągalny na: http://www.cct2011.org/
- 102. Krzyżyńska R., Szafruga K., 2011, Ograniczenie emisji NOx, S02, PM10 i PM2.5 oraz wdrożenie programu ochrony zdrowia mieszkańców przed parami rtęci, metalami ciężkimi oraz WWA. Identyfikacja potencjału i zasobów Dolnego Śląska w obszarze nauka i technologie na rzecz poprawy jakości życia (quality of life) oraz wytyczenie przyszłych kierunków rozwoju: badania metodami foresight, Wrocław, Uniwersytet Ekonomiczny, 25.
- 103. Krzyżyńska R., 201 l,A novel method for NOx and Hg emission control in power plants using existing wet limestone scrubbers. Industrial fluidization South Africa, IFSA 2011: The Proceedings of a Conference on Fluidization Held in Johannesburg, South Africa, 16-17 November 2011, eds. A. Luckos and P. den Hoed. Johannesburg: Soutem Affican Institit of Mining and Metallurgy, 353-360.
- 104. Krzyżyńska R., 201 la, Zastosowanie chlorynu sodu w mokrym absorberze z wieżą natleniającą: badania w skali pilotowej. Nowoczesne rozwiązania w inżynierii i ochronie środowiska, red. nauk. Sergeya Anisimova i in., T. 1, Instytut Klimatyzacji i Ogrzewnictwa, Wydział Inżynierii Środowiska, Politechnika Wrocławska, 357-362.
- 105. Krzyżyńska R., 201 lb, Reemisja rtęci i dwutlenku chloru z mokrego absorbera zasilanego zawiesiną węglanu wapnia i chlorynu sodu. Nowoczesne rozwiązania w inżynierii i ochronie środowiska, red. nauk. Sergey Anisimov i in., T. 1, Instytut Klimatyzacji i Ogrzewnictwa, Wydział Inżynierii Środowiska, Politechnika Wrocławska, 349-355.
- 106. Krzyżyńska R., Zhao Y., Hutson N., 2010, Absorption ofNOx, S02, and mercury in a simulated additive-enhanced wet flue gas desulphurization scrubber, Pol. J. Environ. Stud., 19(6), 1255—1262.
- 107. Krzyżyńska R., 2006, Ograniczenie emisji rtęci ze spalin kotłów opalanych węglem, praca doktorska, Politechnika Wrocławska, 136.
- 108. Kuropka J., 2010, Reduction of nitrogen oxides from boiler flue gases, Environ. Protect. Eng., 36(2), 111-122.
- 109. Kuropka J., 1988, Oczyszczanie gazów odlotowych z zanieczyszczeń gazowych, Prace Naukowe Instytutu Inżynierii Ochrony Środowiska, nr 62, Monografie, nr 30, Wrocław.
- 110. Laks D.R., 2009, Assessment of chronic mercury exposure within the U.S. population, national health and nutrition examination survey, 1999—2006, BioMetals, 22(6), 1103-1114.
- 111. Lee H.K., Deshwal B.R., Yoo K.S., 2005, Simultaneous Removal of S02 and NO by Sodium Chlorite Solution in Wetted-Wall Column, Korean J. Chem. Eng., (22), 208-213.
- 112. Liu Y., Bisson T.M., Yang H., Xu Z., 2010, Recent developments in novel sorbents for flue gas clean up, Fuel Proc. Tech., 91(10), 1175-1197.
- 113. Liu Y.L., Sun L., Zhang Y.G., 2011, Hazards of inhalable particulates PM 2.5 on human health, J. Int. Pharmaceut. Res., 38(6), 428—431.
- 114. Liu Y., Zhang J., Sheng C., 201 la, Study on the kinetics of NO removal from simulated flue gas by a wet ultraviolet/H202 advanced oxidation process, Energ. Fuel., 25(4), 1547-1552.
- 115. Liu Y., Zhang J., Sheng C., Zhang, Y., Zhao L., 2010a, Experimental research on influencing factors of wet removal of NO from coal-fired flue gas by UV/H202 advanced oxidation process, Sci. China. E., 53(7), 7, 1839-1846.
- 116. Liu Y., Zhang J., Sheng C., Zhang Y., Zhao L., 2010b, Preliminary study on a new technique for wet removal of nitric oxide from simulated flue gas with an ultraviolet (UV)/H202 process, Energ. Fuel., 24(9), 4925-4930.
- 117. Liu Y., Zhang J., Sheng C., Zhang Y., Zhao L., 2010c, Wet removal of sulfur dioxide and nitric oxide from simulated coal-fired flue gas by UV/H202 advanced oxidation process, Energ. Fuel., 24(9), 4931—4936.
- 118. Long X.L., Xiao W.D., Yuan W.K., 2005, Simultaneous absorption of NO and S02 into hexammineco-balt(II)/iodide solution, Chemosphere, (59), 811-817.
- 119. Lóthgren C.J., Takaoka M., Andersson S., Allard B., Korell J., 2007, Mercury speciation in flue gases after an oxidative acid wet scrubber, Chem. Eng. Tech., 30(1), 131-138.
- 120. Luttmann-Gibson H., Suh H.H., Coull B.A., Dockery D.W., Samat S.E., Schwartz J., Stone P.H., Gold D.R., 2006, Short-term effects of air pollution on heart rate variability in senior adults in Steubenville, Ohio, J. Occup. Environ. Med., 48(8), 780-800.
- 121. Maddison A., 2009, Statistics on World Population, GDP and Per Capita GDP, 1-2008 AD, University of Groningen.
- 122. McLamon C.R., Jones M.D., 2000, Electro-catalytic Oxidation Process for Multipollutant Control at FirstEnergy’s R.E. Burger Generating Station, Presented at the Electric Power 2000 Conference, Cincinnati, OH, April 5, 2000.
- 123. Meij R., Winkel H., 2006, Mercury emissions from coal-fired power stations: The current state of the art in the Netherlands, Sci. Total. Environ., (368), 393-339.
- 124. Meij R., Vredenbregt L., Winkel H., 2001, The fate of mercury in coal-fired power plants, Proceedings of the U.S. EPA-DOE-EPRI Combined Power Plant Air Pollutant Control Symposium: The MEGA Symposium and The A&WMA Specialty Conference on Mercury Emissions: Fate, Effects, and Control, Chicago, IL, August 20-23, 2001.
- 125. Michigan L., 2010, Multi-pollutant Emission Reduction Technology for Small Utility Boilers. Nalco Mobotec, Innovative Industrial Source Control and Measurement Technologies Workshop, March 24.
- 126. Miller K.A., Siscovick D.S., Sheppard L., Shepherd K., Sullivan J.H., Anderson G.L., Kaufman J.D., 2007, Long-term exposure to air pollution and incidence of cardiovascular events in women, N. Engl. J. Med., 356(5), 447^458.
- 127. Ministerstwo Gospodarki, 2007, Strategia działalności górnictwa węgla kamiennego w Polsce w latach 2007-2015, Dokument przyjęty przez Radę Ministrów w dniu 31 lipca 2007.
- 128. Ministerstwo Środowiska, 2010, Redukcja emisji przemysłowych - będą korzystne dla Polski złagodzenia, Nowa Energia 2010, wortal energetyczny http://nowa-energia.com.pl [dostęp 4 marca 2012].
- 129. Mok Y.S., Lee H.J., 2006, Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-réduction technique, Fuel Process. Tech., (87), 591-597.
- 130. Mok Y.S., 2006a, Absorption-réduction technique assisted by ozone injection and sodium sulfide for NOx removal from exhaust gas, Chem. Eng. J., (118), 63—67.
- 131. Myers E.B., Overcamp T.J., 2002, Hydrogen Peroxide Scrubber for the Control of Nitrogen Oxides, Environ. Eng. Sci., 19(5), 321-327.
- 132. Natural Resources Canada, 2012, Integrated Multi-pollutant Control, canmetenergy.nrcan.gc.ca [dostęp kwietnia 2012].
- 133. Occupational Safety and Health Administration Technical Center, 1991, Chlorine Dioxide in Workplace Atmospheres, by J.C. Ku (OSHA-SLTC Method No. ID-202). Salt Lake City, UT.
- 134. O’Connor G.T., Neas L., Vaughn B., Kattan M., Mitchell H., Crain E.F., Evans R. 3rd, Gruchalla R., Morgan W., Stout J., Adams G.K., Lippmann M., 2008, Acute respiratory health effects of air pollution on children with asthma in US inner cities, J. Allergy Clin. Immunol., 121(5), 1133-1139.
- 135. Pacyna J.M., Sundseth K., Pacyna E.G., Jozewicz W., Munthe J., Belhaj M., Astrom S., 2010, An assessment of costs and benefits associated with mercury emission reductions from major anthropogenic sources, J. Air Waste Manage. Assoc., 60(3), 302-315.
- 136. Park S.K., O'Neill M.S., Vokonas P.S., Sparrow D., Wright R.O., Coull B., Nie H., Hu H., Schwartz J., 2008, Air pollution and heart rate variability: effect modification by chronic lead exposure, Epidemiology, 19(1), 111-120.
- 137. Pawłowski L., 2011, Sustainability and Global Role of Heavy Metals, Problemy Ekorozwoju, 6(1), 59-64.
- 138. Pavlish J.H., Sondreal E.A., Mann M.D., Olson E.S., Galbreath K.C., Laudal D.L., Benson S.B., 2003, Status review of mercury control options for coal-fired power plants, Fuel Process. Tech., 82, 89-165.
- 139. Perry R.H., Chilton C.H., 1973, Chemical Engineers Handbook, 5th ed., McGraw-Hill, USA.
- 140. Plewa F., Popczyk M., Mysłek Z., 2007, Rodzaje produktów wytwarzanych w energetyce zawodowej i możliwości ich wykorzystania w podziemnych technologiach górniczych, Polityka Energetyczna, 10, 391—402.
- 141. Pope III C.A., Dockery D.W., 2006, Health Effects of Fine Particulate Air Pollution: Lines that Connect. 2006 Critical Review, J. Air & Waste Manage. Assoc., 56, 709-742.
- 142. Rafako, 2012, Metoda mokra wapienna, http://www.rafako.com.pl/produkty/575, [dostęp 2 kwietnia 2012].
- 143. Rafako, 2010, Sprawozdanie z działalności grupy kapitałowej Rafako w Raciborzu, sierpień 2010.
- 144. Roosli M., 2011, Non-cancer effects of chemical agents on children’s health, Progr. Biophys. Mol. Biol., 107(3), 315-322.
- 145. Sable S.P., de Jong W., Meij R., Spliethoff H., 2007, Effect of air-staging on mercury speciation in pulverized fuel co-combustion: Part 2, Energ. Fuel., 21(4), 1891-1894.
- 146. Sable S.P., de Jong W., Meij R., Spliethoff H., 2007a, Effect of secondary fuels and combustor temperature on mercury speciation in pulverizedfuel co-combustion: Part 1, Energ. Fuel., 21(4), 1883-1890.
- 147. Sada E.H., Kumazawa Y., Hayakawa N., 1977, Absorption of NO in Aqueous solutions of KMn04, Chem. Eng Sci., 32, 1171-1175.
- 148. Sada E., Kumazawa H., Hikosaka H., 1986, A kinetic-study of absorption of NO into aqueous-solutions of Na2S03 with added Fe(II)-EDTA chelate, Ind. Eng. Chem. Fund., 25(3), 386-390.
- 149. Sada E., Kumazawa H., Kayahara H., Hagiwara H., Bae S.Y., 1990, Removal of NO by Coordination to Iron(II) Immobilized Chelate Resins, Ind. Eng. Chem. Fund., 29, 735—737.
- 150. Sada E., Kumazawa H., Kudo I., Kondo T., 1979, Absorption of Lean in Aqueous Slurries of Ca(OH)2 with NaCl02 or Mg(OH)2 with NaCl02, Chem. Eng. Sci., 34, 719-724.
- 151. Sada E., Kumazawa H., Kudo I., Kondo T., 1979a, Absorption of Lean NOx in Aqueous Solutions of NaCl02 andNaOH, Ind. Eng. Chem. Process. Des. Dev., 18(2), 275-278.
- 152. Sada E., Kumazawa,H., Yamanaka Y., Kudo I., Kondo T., 1978, Absorption of Sulfur Dioxide and Nitric Oxide in Aqueous Mixed Solutions of Sodium Chlorite and Sodium Hydroxide, J. Chem. Eng. Jpn.,11(4), 276-282.
- 153. Samara F., Wyrzykowska B., Tabor D., Touati D., Gullett B.K., 2010, Toxicity comparison of chlorinated and brominated dibenzo-p-dioxins and dibenzofurans in industrial source samples by HRGC/HRMS and enzyme immunoassay, Environ. Int., 36(3), 247—253.
- 154. Schofield K., 2012, Mercury emission control from coal combustion systems: A modified air preheater solution, Comb. Flam., 159(4), 1741-1747.
- 155. Senior C.L., 2007, Review of the Role of Aqueous Chemistry in Mercury Removal by Acid Gas Scrubbers on Incinerator Systems, Environ. Eng. Sci., 24, 1128-1133.
- 156. Sexton J.A., Confuorto N., Suchais N., 2004, LoTOx™ Technology Demonstration at Marathon Ashland Petroleum LLC's Refinery in Texas City, Texas. NPRA Annual Meeting Papers 2004.
- 157. Shi Y., Littlejohn D., Chang S., 1996, Kinetics of NO absorption in aqueous iron (II) bis (2,3-dimercapto-1-propanesulfonate) solutions using a stirred reactor, Ind. Eng. Chem. Res., 35, 1668-1672.
- 158. Shi Y., Wang H., Chang S.G., 1997, Kinetics of NO absorption in aqueous iron (Il)thiochelate solutions, Environ. Prog., 16(4), 301-306.
- 159. Simkhovich B.Z., Kleinman M.T., Kloner R.A., 2008, Air pollution and cardiovascular injury epidemiology, toxicology, and mechanisms, J. Am. Coll. Cardiol., 52(9), 719-726.
- 160. Skalska K., Miller J.S., Ledakowicz S., 2010, Trends in NOx abatement: A review, Sci. Total Environ., (408), 3976-3989.
- 161. Skalska K., Miller J.S., Ledakowicz S., 2011, Kinetic model ofNOx ozonation and its experimental verification, Chem. Eng. Sci., (66), 3386-3391.
- 162. Sloss L.L., 2008, Economics of Mercury Control. Report of Clean Coal Center and International Energy Agency, IEA Clean Coal Centre, CCC/134.
- 163. Smith D.J., 1992, NOx emission Control Demands a Range of solutions, Power Eng., (96-7), 44-48.
- 164. Srivastava R.K., Hall R.E., Khan S., Culligan K., Lani B.W., 2005, Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers, J. Air Waste Manage. Assoc., (55), 1367-1388.
- 165. Srivastava S. K., Hutson N.D., Martin G.B., Princiotta F., Staudt, J., 2006, Control of Mercury Emissions from Coal-Fired Electric Utility Boilers, Env. Sci. & Tech., 40, 1385-1393.
- 166. Srivastava R.K., Jozewicz W.S., 2001, Flue Gas Desulfurization: The State of the Art., J. Air Waste Manage. Assoc., 51, 1676-1688.
- 167. Staudt J.E., Jozewicz W., 2003, Performance and Cost of Mercury and Multipollutant Emission Control Technology Applications on Electric Utility Boilers, U.S. EPA Report EPA/600/R-03/110, Washington, D.C.
- 168. Steinmuller S., 2009, Knick Application Report. pH Measurements in Flue Gas Cleaning Plants (Gas Scrubbers). Flue Gas desulfurization (FGD) fossil fuel power plants and waste incineration plants.
- 169. Suchecki T.T., 1995, Regeneracja roztworów poabsorpcyjnych chelatowej metody usuwania tlenków azotu i siarki z gazów odlotowych, Zakład Narodowy im. Ossolińskich - Wydawnictwo, Wrocław 1995.
- 170. Suchecki T.T., Mathews B., Kumazawa H., 2005, Kinetic study of ambient-temperature reduction of FelHedta by Na2S204, Ind. Eng. Chem. Res., 44(12), 4249^1253.
- 171. Suchecki T.T., Rachwał T., 2002, Simultaneous Control ofS02 and NOx by the Chelate Method, Zeszyty Naukowe Uniwersytetu w Wuppertalu.
- 172. Sun W.U., Ding S.L., Zeng S.S., Su S.J., Jiang W.J., 2011, Simultaneous absorption ofNOx and S02from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone, J. Hazard. Mater., (192), 124-130.
- 173. Takeuchi H., Ando M., Kizawa N., 1977, Absorption of Nitrogen Oxides in Aqueous Sodium Sulfite and Bisulfite Solutions, Ind. Eng. Chem. Proc. Des. Dev., 16(3), 303-308.
- 174. Takeuchi H., Takahashi K., Kizawa N., 1977a, Absorption of nitrogen dioxide in sodium sulfite solution from air as a diluent, Ind. Eng. Chem. Proc. Des. Dev., (16), 486—490.
- 175. Taylor M.C., White J.F., Vincent G.P., Cunninghan G.L., 1940, Sodium chlorite, Ind. Eng. Chem., 32(7), 899-903.
- 176. Teramoto M., Ikeda M., Teranishi H., 1976, Absorption rates of NO in mixedaqueous solutions of Na-C102 andNaOH, Kagaku Kogaku Ronbunshu (J. Eng. Jpn.), (2), 637-640.
- 177. The European Parliament and the Council Of The European Union, 2001, Directive 2001/80/EC of the European Parliament and of the Council of 23 October 2001 on the limitation of emission of certain pollutants into air from large combustion plants, Official Journal of the European Communities, OJ. L 309, 27.11.2001,44, 1-21.
- 178. The European Parliament and the Council Of The European Union, 2001a, Directive 2001/81/EC of the European Parliament and of the Council of 23 October 2001 on national emission ceilings for certain atmospheric pollutants, OJ. L 309, 27.11.2001, 309, 22-30.
- 179. The European Parliament and the Council Of The European Union, 2008, Directive 2008/1/EC of the European Parliament and of the Council of 15 January 2008 on concerning integrated pollution prevention and control, OJ. L series, 29.01.2008, 24, 8-29.
- 180. The European Parliament and the Council Of The European Union, 2010, Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control), OJ. L series, 334, 17.12.2010, 53, 17—119.
- 181. Thomas D., Vanderschuren J., 2000, Analysis and prediction of the liquid phase composition for the absorption of nitrogen oxides into aqueous solutions, Sep. Sci. Tech., 18, 37^45.
- 182. Tavoulareas S.T., Jozewicz W., 2005, Multipollutant Emission Control Technology Options for Coal-fired Power Plants, Raport EPA-600/R-05/034, Washington, DC.
- 183. United Nations Environment Programme (UNEP), 2011, Intergovernmental negotiating committee to prepare a global legally binding instrument on mercury. Preparation of a global legally binding instrument on mercury — Dokumenty: UNEP(DTIE)/Hg/INC.3/INF/1 i UNEP(DTIE)/Hg/INC.3/INF/2
- 184. United Nations Environment Programme (UNEP), 2012, UNEP Global Mercury Partnership, http://www.unep.org/hazardoussubstances/Mercury [dostęp 1 maja 2012].
- 185. United Nations Environment Programme (UNEP), 2012a, The Negotiating Process, http://www.unep.org/ hazardoussubstances/MercuryNot/MercuryNegotiations/ [dostęp 1 maja 2012].
- 186. United Nations Population Division, 2009, World Population Prospects: The 2008 Revision, New York, United States.
- 187. Urząd Regulacji Energetyki, 2011, Raport Krajowy Prezesa Urzędu Regulacji Energetyki, lipiec 2011.
- 188. U.S. Energy Information Administration, 2010, Independent Statistics and Analysis. International Energy Outlook 2010 - Highlights, Report #: DOE/EIA-0383(2010) ttp://www.eia.gov/
- 189. U.S. Environmental Protection Agency, 2012, Air Pollutants, http://www.epa.gov/air/airpollutants.html [dostęp 1 kwietnia 2012].
- 190. U.S. Environmental Protection Agency, 2012a, Air Trends - Sulfur Dioxide, http://www.epa.gov/airtrends/ sulfur.html [dostęp 3 kwietnia 2012].
- 191. U.S. Environmental Protection Agency, 2012b, Mercury, http://www.epa.gov/hg/ [dostęp 3 kwietnia 2012].
- 192. U.S. Environmental Protection Agency, 2011, Cross-State Air Pollution Rule (CSAPR), http://epa.gov/ airtransport/index.html [dostęp 1 września 2012].
- 193. U.S. Environmental Protection Agency, 2011, Mercury and Air Toxics Standards (MATS) for Power Plants, http://www.epa.gov/mats/ [dostęp 3 kwietnia 2012].
- 194. U.S. Environmental Protection Agency, 2009, Clean Air Research Program Review. Clean Air Research Program Source to Health Outcomes!Multi-pollutant Summary and Abstracts, May 2009.
- 195. U.S. Environmental Protection Agency, 2005, Multipollutant Emission Control Technology Options for Coal-Fired Power Plants, Raport EPA-600/R-05/034.
- 196. U.S. Environmental Protection Agency, 2000, Controlling S02 Emissions: A Review of Technologies, Raport EP A/600/R-00/093.
- 197. U.S. Environmental Protection Agency, 1997, Mercury Study Report to Congress. Volume V: Health Effects of Mercury and Mercury Compounds, Raport EPA-452/R-97-007.
- 198. U.S. Environmental Protection Agency, 1994, EPA Method 7470A. Mercury in Liquid Waste (Manual Cold-Vapor Technique). SW-846 Online: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.
- 199. U.S. Environmental Protection Agency, 1993, EPA Method 300.0. Determination of Inorganic Anions by Ion Chromatography. Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100).
- 200. Vosteen W.B., Kanefke R., 2006, Bromine-enhanced Mercury Abatement from Combustion Flue Gases -Recent Industrial Applications and Laboratory Research, VGB Power Tech., 86(3), 70-75.
- 201. Wang Z., Li B., Ehn A., Sun Z.W., Li Z.S., Bood J., Alden M., Cen K.F., 2010, Investigation of flue-gas treatment with 03 injection using NO andN02 planar laser-inducedfluorescence, Fuel, 89, 2346-2352.
- 202. Wang Z., Zhou J., Zhu Y., Wen Z., Liu J., Cen K., 2007, Simultaneous removal of NO» S02 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results, Fuel Process. Tech., (88), 817-823.
- 203. Warych J., 1998, Oczyszczanie gazów, wydanie trzecie zmienione, Procesy i Aparatura, Wydawnictwa Naukowo-Techniczne, Warszawa.
- 204. Warych J., 1999, Procesy oczyszczania gazów. Problemy projektowo-obliczeniowe, Oficyna Wydawnicza Politechniki Warszawskiej.
- 205. Washington State Department of Ecology and Washington State Department of Health, 2003, Raport nr 03-03-001: Washington State Mercury Chemical Action Plan.
- 206. Weilert C.V., 2001, Analysis of ICR Data for Mercury Removal from Wet and Dry FGD, Proceedings of the U.S. EPA-DOE-EPRI Combined Power Plant Air Pollutant Control Symposium: The MEGA Symposium and The A&WMA Specialty Conference on Mercury Emissions: Fate, Effects, and Control, Chicago, IL, August 20-23, 2001.
- 207. Wheeler A., Zanobetti A., Gold D.R., Schwartz J., Stone P., Suh H.H., 2006, The relationship between ambient air pollution and heart rate variability differs for individuals with heart and pulmonary disease, Environ. Health Perspect., 114(4), 560-566.
- 208. Weilert C., Meyer E., 2010, Utility FGD Design Trends, Power Eng., 114(8), 10-12.
- 209. White J.F., Taylor M.C., Vincent G.P., 1942, Chemistry of Chlorites, Ind. Eng. Chem., 34(7), 782-779.
- 210. Wyrzykowska B., Bochentin I., Hanari N., Orlikowska A. Falandysz J., Yuichi H., Yamashita N., 2006, Source determination of highly chlorinated biphenyl isomers in pine needles - Comparison to several PCB preparations, Environ. Pollut., 143(1), 46—59.
- 211. Zang V., Kotowsky M., van Eldik R., 1988, Kinetics and mechanism of the formation of Feu(EDTA)fNO/HONO/NOr in aqueous solutions, Inorg. Chem., 27, 3279-3283.
- 212. Zang V., Van Eldik R., 1990, Kinetics and mechanism of the autoxidation of iron (II) induced trough chelation by ethylenediaminetetraacetate and related ligands, Inorg. Chem., 29, 1705-1711.
- 213. Zhao Y.I., Liu S., Chen Ch., Ma X., 2008, Removal of Elemental Mercury by Sodium Chlorite Solution, Chem. Eng. Tech., 31(3), 350-354.
- 214. Zhao L.L., Rochelle G.T., 1999, Mercury absorption in aqueous hypochloride, Chem. Eng. Sci., 54(5), 655-662.
- 215. Zhao L.L., Rochelle G.T., 1998a, Hg Absorption in Aqueous Permanganate, AIChE Journal, (42-12), 3559-3562.
- 216. Yang C.L., Shaw H., Perlmutter H.D., 1996, Absorption of NO promoted by strong oxidizing agents: Inorganic oxy-chlorites in nitric acid, Chem. Eng. Commun., 143, 23-38.
- 217. Yih S.-M., Lii C.-W., 1988, Absorption of NO and S02 in Fe(II)-EDTA solutions I: absorption in a double stirred vessel, Chem. Eng. Commun., 73, 43-53.
- 218. Xu M., Qiao Y., Zheng C., Li L., Liu J., 2003, Modeling of homogeneous mercury speciation using detailed chemical kinetics, Comb. Flam., 132, 208-218.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d36ca61f-89f8-4c1c-97da-7ccbbea773ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.