PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Standardization tests for the industrialization of grid-friendly Virtual Synchronous Generators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three synchronous machine models representing three precision levels (complete, reduced and static), implemented in a virtual synchronous generator (VSG)-based industrial inverter, are compared and discussed to propose a set of tests for a possible standardization of VSG-based inverters and to ensure their “grid-friendly” operation in the context of isolated microgrids. The models and their implementation in the microcontroller of an industrial inverter (with the local control) are discussed, including the usability of the implementation with large-scale developments constraints in mind. The comparison is conducted based on existing standards (for synchronous machines and diesel generators) in order to determine their needed evolution, to define the requirements for future grid-friendly inverter-based generators, notably implementing a VSG solution.
Rocznik
Strony
679--688
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), G2Elab, 38000 Grenoble, France
  • Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), Gipsa-lab, 38000 Grenoble, France
  • Power Conversion department, SCHNEIDER ELECTRIC INDUSTRIES, 38000 Grenoble, France
  • Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), G2Elab, 38000 Grenoble, France
autor
  • Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), G2Elab, 38000 Grenoble, France
  • Power Conversion department, SCHNEIDER ELECTRIC INDUSTRIES, 38000 Grenoble, France
autor
  • Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), Gipsa-lab, 38000 Grenoble, France
autor
  • Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), G2Elab, 38000 Grenoble, France
Bibliografia
  • [1] M. Parol, Ł. Rokicki, and R. Parol, “Towards optimal operation control in rural low voltage microgrids”, Bull. Pol. Ac.: Tech. 67 (4), 799–812 (2019), doi: 10.24425/bpasts.2019.130189.
  • [2] H. Bevrani, T. Ise, and Y. Miura, “Virtual synchronous generators: A survey and new perspectives”, Int. J. Electr. Power Energy Syst. 54, 244–254 (Jan. 2014).
  • [3] V. Van Thong et al., “Virtual synchronous generator: Laboratory scale results and field demonstration”, in 2009 IEEE Bucharest PowerTech, 2009, pp. 2–7.
  • [4] M.A. Rahmani, Y. Herriot, S. L. Sanjuan, and L. Dorbais, “Virtual synchronous generators for microgrid stabilization: Modeling, implementation and experimental validation on a microgrid laboratory”, in 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), vol. 2017-Decem, pp. 1–8 (2017).
  • [5] International Electrotechnical Commission, “IEC 60034-1 section 9.11.3”, 2004.
  • [6] I. Standard, “INTERNATIONAL STANDARD”, vol. 2005, 2005.
  • [7] Institute of Electrical and Electronics Engineers and IEEE-SA Standards Board, IEEE guide for test procedures for synchronous machines. Part I, Acceptance and performance testing, New York: Institute of Electrical and Electronics Engineers, 2010.
  • [8] International Organization for Standardization, “ISO 85285:2013 – eciprocating internal combustion engine driven alternating current generating sets – Part 5: Generating sets”, Switzerland, 2013.
  • [9] J. Driesen and K. Visscher, “Virtual synchronous generators”, in 2008 IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008, no. August 2008, pp. 1–3.
  • [10] G. Benysek, M. P. Kazmierkowski, J. Popczyk and R. Strzelecki, “Power electronic systems as a crucial part of Smart Grid infrastructure – A survey”, Bull. Pol. Ac.: Tech. 59 (4), 455–473 (2011), doi: 10.2478/v10175-011-0058-2.
  • [11] Y. Chen, R. Hesse, D. Turschner, and H.-P. Beck, “Investigation of the Virtual Synchronous Machine in the island mode”, in 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 2012, pp. 1–6.
  • [12] H. Alatrash, A. Mensah, E. Mark, R. Amarin, and J. H. R. Enslin, “Generator emulation controls for photovoltaic inverters”, in 8th International Conference on Power Electronics – ECCE Asia 3 (2), 2043–2050 (2011).
  • [13] C. Li, R. Burgos, I. Cvetkovic, D. Boroyevich, L. Mili, and P. Rodriguez, “Analysis and design of virtual synchronous machine based STATCOM controller”, 2014 IEEE 15th Work. Control Model. Power Electron. pp. 1–6, 2014.
  • [14] S. D’Arco, J.A. Suul, and O.B. Fosso, “A Virtual Synchronous Machine implementation for distributed control of power converters in SmartGrids”, Electr. Power Syst. Res. 122, 180–197 (May 2015).
  • [15] Y. Chen, R. Hesse, D. Turschner, and H.-P. Beck, “Comparison Of Methods For Implementing Virtual Synchronous Machine On Inverters”, 2012 Int. Conf. Renew. Energies Power Qual. 1 (10), 734–739 (2012).
  • [16] Y. Ma, W. Cao, L. Yang, F.F. Wang, and L.M. Tolbert, “Virtual Synchronous Generator Control of Full Converter Wind Turbines with Short-Term Energy Storage”, IEEE Trans. Ind. Electron. 64 (11), 8821–8831 (2017).
  • [17] Q. Zhong and G. Weiss, “Synchronverters: Grid-Friendly Inverters That Mimic Synchronous Generators”, in Control of Power Inverters in Renewable Energy and Smart Grid Integration, vol. 58, no. 4, Chichester, West Sussex, United Kingdom: John Wiley & Sons, Ltd., 2012, pp. 277–296.
  • [18] Y. Hirase, K. Abe, K. Sugimoto, and Y. Shindo, “A gridconnected inverter with virtual synchronous generator model of algebraic type”, Electr. Eng. Japan 184 (4), 10–21 (Sep. 2013).
  • [19] K. Sakimoto, K. Sugimoto, and Y. Shindo, “Low voltage ride through capability of a grid connected inverter based on the virtual synchronous generator”, in 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), 2013, pp. 1066–1071.
  • [20] O. Mo, S. D’Arco, and J.A. Suul, “Evaluation of Virtual Synchronous Machines With Dynamic or Quasi-Stationary Machine Models”, IEEE Trans. Ind. Electron. 64 (7), 5952–5962 (2017).
  • [21] Y. Hirase, K. Abe, K. Sugimoto, K. Sakimoto, H. Bevrani, and T. Ise, “A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids”, Appl. Energy 210, 699–710 (2018).
  • [22] P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994.
  • [23] A. Moulichon, L. Garbuio, V. Debusschere, M.A. Rahamani, and N. Hadjsaid, “A Simplified Synchronous Machine Model for Virtual Synchronous Generator Implementation”, 2019 IEEE Power Energy Soc. Gen. Meet. pp. 1–5, 2019.
  • [24] Y. Hirase, K. Sugimoto, K. Sakimoto, and T. Ise, “Analysis of Resonance in Microgrids and Effects of System Frequency Stabilization Using a Virtual Synchronous Generator”, IEEE J. Emerg. Sel. Top. Power Electron. 4 (4), 1287–1298 (2016).
  • [25] M.P. Boucherot, “Experiences and new considerations on parallel alternators coupling” (in French), La Houille Blanche 8, 276–283 (Aug. 1904).
  • [26] A. Kasprowicz, “Induction generator with three-level inverters and LCL filter connected to the power grid”, Bull. Pol. Ac.: Tech. 67 (3), 593–604 (2019), doi: 10.24425/bpasts.2019.129657.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d366f79c-3bf9-4b55-9c3b-898c5c4acc81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.