PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microalgae potential in the capture of CO2 emission

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a perspective projected to reduce the atmospheric concentration of greenhouse gases, in which carbon dioxide is the master, the use of microalgae is an effective and decisive response. The review describes the bio circularity of the process of abatement of carbon dioxide through biofixation in algal biomass, highlighting the potential of its reuse in the production of high value-added products.
Twórcy
  • Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 - Modena, Italy
autor
  • Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 - Modena, Italy
  • Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 - Modena, Italy
autor
  • Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 - Modena, Italy
Bibliografia
  • [1] T.M.L. Wigley, P.D. Jones, P.M. Kelly, Global warming?, Nature. 291 (1981) 285. https://doi.org/10.1038/291285a0.
  • [2] N.J.L. Lenssen, G.A. Schmidt, J.E. Hansen, M.J. Menne, A. Persin, R. Ruedy, D. Zyss, Improvements in the GISTEMP Uncertainty Model, J. Geophys. Res. Atmos. 124 (2019) 6307–6326. https://doi.org/10.1029/2018JD029522.
  • [3] M. Molazadeh, H. Ahmadzadeh, H.R. Pourianfar, S. Lyon, P.H. Rampelotto, The use of microalgae for coupling wastewater treatment with CO2 biofixation, Front. Bioeng. Biotechnol. 7 (2019). https://doi.org/10.3389/fbioe.2019.00042.
  • [4] W.Y. Cheah, P.L. Show, J.S. Chang, T.C. Ling, J.C. Juan, Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae, Bioresour. Technol. 184 (2015) 190–201. https://doi.org/10.1016/j.biortech.2014.11.026.
  • [5] S. Solomon, J.S. Daniel, T.J. Sanford, D.M. Murphy, G.K. Plattner, R. Knutti, P. Friedlingstein, Persistence of climate changes due to a range of greenhouse gases, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 18354–18359. https://doi.org/10.1073/pnas.1006282107.
  • [6] J. Singh, D.W. Dhar, Overview of carbon capture technology: Microalgal biorefinery concept and state-of-the-art, Front. Mar. Sci. 6 (2019) 1–9. https://doi.org/10.3389/fmars.2019.00029.
  • [7] A. Boretti, Covid 19 impact on atmospheric CO2 concentration, Int. J. Glob. Warm. 21 (2020) 317–323. https://doi.org/10.1504/IJGW.2020.108686.
  • [8] B. Zhao, Y. Su, Process effect of microalgal-carbon dioxide fixation and biomass production: A review, Renew. Sustain. Energy Rev. 31 (2014) 121–132. https://doi.org/10.1016/j.rser.2013.11.054.
  • [9] Intergovernmental Panel on Climate Change, Climate Change 2014 Mitigation of Climate Change, Cambridge University Press, Cambridge, 2014. https://doi.org/10.1017/cbo9781107415416.
  • [10] X. Li, A. Kraslawski, Conceptual process synthesis: Past and current trends, Chem. Eng. Process. Process Intensif. 43 (2004) 583–594. https://doi.org/10.1016/j.cep.2003.05.002.
  • [11] K. Damen, M. Van Troost, A. Faaij, W. Turkenburg, A comparison of electricity and hydrogen production systems with CO 2 capture and storage. Part A: Review and selection of promising conversion and capture technologies, Prog. Energy Combust. Sci. 32 (2006) 215–246. https://doi.org/10.1016/j.pecs.2005.11.005.
  • [12] J.N. Knudsen, J.N. Jensen, P.J. Vilhelmsen, O. Biede, Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents, in: Energy Procedia, 2009: pp. 783–790. https://doi.org/10.1016/j.egypro.2009.01.104.
  • [13] Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, J. Wang, PVAm–PIP/PS composite membrane with high performance for CO2/N2 separation, AIChE J. 59 (2012) 215–228. https://doi.org/10.1002/aic.
  • [14] P. Stegmann, M. Londo, M. Junginger, The circular bioeconomy: Its elements and role in European bioeconomy clusters, Resour. Conserv. Recycl. X. 6 (2020) 100029. https://doi.org/10.1016/j.rcrx.2019.100029.
  • [15] A. Shahid, A. Zafar Khan, T. Liu, S. Malik, I. Afzal, M.A. Mehmood, Production and Processing of Algal Biomass, in: Algae Based Polym. Blends, Compos. Chem. Biotechnol. Mater. Sci., Elsevier, 2017: pp. 273–299. https://doi.org/10.1016/B978-0-12-812360-7.00007-0.
  • [16] C.W.W. Ng, R. Tasnim, J.L. Coo, Effects of atmospheric CO2 concentration on soil-water retention and induced suction in vegetated soil, Eng. Geol. 242 (2018) 108–120. https://doi.org/10.1016/j.enggeo.2018.06.001.
  • [17] M.K. Lam, K.T. Lee, Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win-win strategies toward better environmental protection, Biotechnol. Adv. 29 (2011) 124–141. https://doi.org/10.1016/j.biotechadv.2010.10.001.
  • [18] C. Grandclément, I. Seyssiecq, A. Piram, P. Wong-Wah-Chung, G. Vanot, N. Tiliacos, N. Roche, P. Doumenq, From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review, Water Res. 111 (2017) 297–317. https://doi.org/10.1016/j.watres.2017.01.005.
  • [19] J. Masojídek, G. Torzillo, M. Koblízek, Photosynthesis in Microalgae, in: Handb. Microalgal Cult. Appl. Phycol. Biotechnol. Second Ed., John Wiley & Sons, Ltd, Oxford, UK, 2013: pp. 21–36. https://doi.org/10.1002/9781118567166.ch2.
  • [20] I. Afzal, A. Shahid, M. Ibrahim, T. Liu, M. Nawaz, M.A. Mehmood, Microalgae: A Promising Feedstock for Energy and High-Value Products, in: Algae Based Polym. Blends, Compos. Chem. Biotechnol. Mater. Sci., Elsevier, 2017: pp. 55–75. https://doi.org/10.1016/B978-0-12-812360-7.00003-3.
  • [21] A.K. Vuppaladadiyam, J.G. Yao, N. Florin, A. George, X. Wang, L. Labeeuw, Y. Jiang, R.W. Davis, A. Abbas, P. Ralph, P.S. Fennell, M. Zhao, Impact of Flue Gas Compounds on Microalgae and Mechanisms for Carbon Assimilation and Utilization, ChemSusChem. 11 (2018) 334–355. https://doi.org/10.1002/cssc.201701611.
  • [22] C.Y. Kao, T.Y. Chen, Y. Bin Chang, T.W. Chiu, H.Y. Lin, C. Da Chen, J.S. Chang, C.S. Lin, Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp., Bioresour. Technol. 166 (2014) 485–493. https://doi.org/10.1016/j.biortech.2014.05.094.
  • [23] P. Kandimalla, S. Desi, H. Vurimindi, Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production, Environ. Sci. Pollut. Res. 23 (2016) 9345–9354. https://doi.org/10.1007/s11356-015-5264-2.
  • [24] M. Ota, M. Takenaka, Y. Sato, R. Lee Smith, H. Inomata, Effects of light intensity and temperature on photoautotrophic growth of a green microalga, Chlorococcum littorale, Biotechnol. Reports. 7 (2015) 24–29. https://doi.org/10.1016/j.btre.2015.05.001.
  • [25] L. Meier, R. Pérez, L. Azócar, M. Rivas, D. Jeison, Photosynthetic CO2 uptake by microalgae: An attractive tool for biogas upgrading, Biomass and Bioenergy. 73 (2015) 102–109. https://doi.org/10.1016/j.biombioe.2014.10.032.
  • [26] Y. Chisti, Biodiesel from microalgae, Biotechnol. Adv. 25 (2007) 294–306.
  • [27] E. Jacob-Lopes, C.H.G. Scoparo, L.M.C.F. Lacerda, T.T. Franco, Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors, Chem. Eng. Process. Process Intensif. 48 (2009) 306–310. https://doi.org/10.1016/j.cep.2008.04.007.
  • [28] A. Kumar, S. Ergas, X. Yuan, A. Sahu, Q. Zhang, J. Dewulf, F.X. Malcata, H. van Langenhove, Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions, Trends Biotechnol. 28 (2010) 371–380. https://doi.org/10.1016/j.tibtech.2010.04.004.
  • [29] M. Morales, L. Sánchez, S. Revah, The impact of environmental factors on carbon dioxide fixation by microalgae, FEMS Microbiol. Lett. 365 (2018). https://doi.org/10.1093/femsle/fnx262.
  • [30] H.W. Yen, I.C. Hu, C.Y. Chen, J.S. Chang, Design of Photobioreactors for Algal Cultivation, in: Biofuels from Algae, Second, Elsevier Inc., 2013: pp. 23–45. https://doi.org/10.1016/B978-0-444-59558-4.00002-4.
  • [31] L. Moraes, G.M. Rosa, A. Morillas España, L.O. Santos, M.G. Morais, E. Molina Grima, J.A.V. Costa, F.G. Acién Fernández, Engineering strategies for the enhancement of Nannochloropsis gaditana outdoor production: Influence of the CO2 flow rate on the culture performance in tubular photobioreactors, Process Biochem. 76 (2019) 171–177. https://doi.org/10.1016/j.procbio.2018.10.010.
  • [32] G. de M. Michele, K. da S. Cleber, A.H. Adriano, A.V.C. Jorge, Carbon dioxide mitigation by microalga in a vertical tubular reactor with recycling of the culture medium, African J. Microbiol. Res. 9 (2015) 1935–1940. https://doi.org/10.5897/ajmr2015.7632.
  • [33] W. Klinthong, Y.H. Yang, C.H. Huang, C.S. Tan, A Review: Microalgae and their applications in CO2 capture and renewable energy, Aerosol Air Qual. Res. 15 (2015) 712–742. https://doi.org/10.4209/aaqr.2014.11.0299.
  • [34] S.R. Ronda, C. Kethineni, L.C.P. Parupudi, V.B.S.C. Thunuguntla, S. Vemula, V.S. Settaluri, P.R. Allu, S.K. Grande, S. Sharma, C.V. Kandala, A growth inhibitory model with SOx influenced effective growth rate for estimation of algal biomass concentration under flue gas atmosphere, Bioresour. Technol. 152 (2014) 283–291. https://doi.org/10.1016/j.biortech.2013.10.091.
  • [35] F. Kaštánek, S. Šabata, O. Šolcová, Y. Maléterová, P. Kaštánek, I. Brányiková, K. Kuthan, V. Zachleder, In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide, Waste Manag. Res. 28 (2010) 961–966. https://doi.org/10.1177/0734242X10375866.
  • [36] J. Doucha, F. Straka, K. Lívanský, Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor, J. Appl. Phycol. 17 (2005) 403–412. https://doi.org/10.1007/s10811-005-8701-7.
  • [37] S.Y. Chiu, C.Y. Kao, T.T. Huang, C.J. Lin, S.C. Ong, C. Da Chen, J.S. Chang, C.S. Lin, Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures, Bioresour. Technol. 102 (2011) 9135–9142. https://doi.org/10.1016/j.biortech.2011.06.091.
  • [38] F.F. Li, Z.H. Yang, R. Zeng, G. Yang, X. Chang, J.B. Yan, Y.L. Hou, Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber, Ind. Eng. Chem. Res. 50 (2011) 6496–6502. https://doi.org/10.1021/ie200040q.
  • [39] I. de Godos, J.L. Mendoza, F.G. Acién, E. Molina, C.J. Banks, S. Heaven, F. Rogalla, Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases, Bioresour. Technol. 153 (2014) 307–314. https://doi.org/10.1016/j.biortech.2013.11.087.
  • [40] W. Zhou, J. Wang, P. Chen, C. Ji, Q. Kang, B. Lu, K. Li, J. Liu, R. Ruan, Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives, Renew. Sustain. Energy Rev. 76 (2017) 1163–1175. https://doi.org/10.1016/j.rser.2017.03.065.
  • [41] M. Dębowski, M. Zieliński, J. Kazimierowicz, N. Kujawska, S. Talbierz, Microalgae cultivation technologies as an opportunity for bioenergetic system development—advantages and limitations, Sustain. 12 (2020) 1–37. https://doi.org/10.3390/su12239980.
  • [42] M.H. Wilson, J. Groppo, A. Placido, S. Graham, S.A. Morton, E. Santillan-Jimenez, A. Shea, M. Crocker, C. Crofcheck, R. Andrews, CO2 recycling using microalgae for the production of fuels, Appl. Petrochemical Res. 4 (2014) 41–53. https://doi.org/10.1007/s13203-014-0052-3.
  • [43] S.D. Milanese, Eni sviluppa una innovativa tecnologia per la biofissazione della CO2 con luce artificiale, (2020).
  • [44] L. Brennan, P. Owende, Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev. 14 (2010) 557–577.
  • [45] S. Venkata Mohan, J.A. Modestra, K. Amulya, S.K. Butti, G. Velvizhi, A Circular Bioeconomy with Biobased Products from CO2 Sequestration, Trends Biotechnol. 34 (2016) 506–519. https://doi.org/10.1016/j.tibtech.2016.02.012.
  • [46] S.P. Singh, P. Singh, Effect of CO2 concentration on algal growth: A review, Renew. Sustain. Energy Rev. 38 (2014) 172–179. https://doi.org/10.1016/j.rser.2014.05.043.
  • [47] J.H. Duarte, L.S. Fanka, J.A.V. Costa, Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation, Bioresour. Technol. 214 (2016) 159–165. https://doi.org/10.1016/j.biortech.2016.04.078.
  • [48] F. Bauer, Narratives of biorefinery innovation for the bioeconomy: Conflict, consensus or confusion?, Environ. Innov. Soc. Transitions. 28 (2018) 96–107. https://doi.org/10.1016/j.eist.2018.01.005.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d364ddb2-68ec-4319-b8dc-bf1259bab675
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.