PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using Anthropogenic Waste (Steel Slag) to Enhance Mechanical and Wear Properties of a Commercial Aluminium Alloy A356

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study addresses the utilization of induction furnace steel slag which is an anthropogenic waste, for enhancing the mechanical properties of a commercial aluminium alloy A356. Different weight percentage (3wt%, 6wt%, 9wt%, and 12wt%) of steel slag particles in 1 to 10 μm size range were used as reinforcing particles in aluminium alloy A356 matrix. The composites were prepared through stir casting technique. The results revealed an improvement in mechanical properties (i.e. microhardness and tensile strength) and wear resistance with an increase in weight percentage of the steel slag particles. This research work shows promising results for the utilization of the steel slag for enhancing the properties of aluminium alloy A356 at no additional cost while assisting at same time in alleviating land pollution.
Rocznik
Strony
279--284
Opis fizyczny
Bibliogr. 33 poz., fot., rys., tab., wzory
Twórcy
  • Sathyabama Institute of Science and Technology, Department of Mechanical and Production Engineering, Chennai, India
  • Sathyabama Institute of Science and Technology, Department of Automobile Engineering Chennai, India, bupeshvk@gmail.com
autor
  • National University of Singapore Department of Mechanical Engineering, Singapore
Bibliografia
  • [1] Shashi Prakash Dwivedi, Satpal Sharma, Raghvendra Kumar Mishra, Procedia Materials Science 6, 1524-1532 (2014).
  • [2] A. Mazahery, O. M. Shabani, Strength of materials 44 (6), 686-692 (2012).
  • [3] B. M. Viswanatha, M. Prasanna Kumar, S. Basavara, T. S. Kiran, Journal of Engineering Science and Technology 8 (6), 754-763 (2013).
  • [4] M. Hajizamani, H. Baharvandi, Advances in Materials Physics and Chemistry 1, 26-30 (2011).
  • [5] A. Jayakumar, M. Rangaraj, International Journal of Emerging Technology and Advanced Engineering 4 (2), 495-501 (2014).
  • [6] M. Nagaral, V. Auradi, M. K. Ravishankar, International Journal of Research in Engineering and Technology 1 (2), 193-198 (2013).
  • [7] Shashi Prakash Dwivedi, Satpal Sharma, Raghvendra Kumar Mishra, International Journal of Manufacturing Engineering 1-13 (2014).
  • [8] Y. U. Xiao-Dong, W. Yang-Wei, W. Fu-chi, Transactions of Nonferrous Metals Society of China 17, 276-279 (2007).
  • [9] Don-Hyun Cho, Yong-Hwan Kim, Byung-Wook Ahn, Yong-Il Kim, Seung-Boo Jung, Transactions of Nonferrous Metals Society of China 23, 335-340 (2013).
  • [10] S. Tzamtzis, N. S. Barekar, N. HariBabu, J. Patel, B. K. Dhindaw, Z. Fan, Composites: Part A40, 144-15 (2009).
  • [11] K. S. Sridhar Raja, V. K. Bupesh Raja, K. R. Vignesh, S. N. Ramana Rao, Applied Mechanics and Materials 766-767, 240-245 (2015).
  • [12] J. Bienia, M. Walczak, B. Surowska, B. J. Sobczaka, Journal of Optoelectronics and Advanced Materials 5 (2), 493-502 (2003).
  • [13] K. K. Alaneme, P. A. Olubambi, Journal of Materials Research and Technology 2 (2),188-194 (2013).
  • [14] D. S. Prasad, C. Shoba, Journal of Materials Research and Technology 3 (2),172-178 (2014).
  • [15] K. Kanayo Alaneme, K. Oladiti Sanusi, Engineering Science and Technology an International Journal 18, 416-422 (2015).
  • [16] K. R. Ravi, V. M. Sreekumar, R. M. Pillai, M. Chandan, K. R. Amaranathan, K. R. Arul, Materials &Design 28, 871-881 (2007).
  • [17] K. B. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J. P. Celis, L. Froyen, Journal of Materials Processing Technology 142, 738-743 (2003).
  • [18] I. Kerti, F. Toptan, Materials Letters 62,1215-1218 (2008).
  • [19] A. Mortensen, National Laboratory, Roskilde, Denmark. 141 (1998).
  • [20] B. C. Pai, K. G. Sathyanarayana, P. Robi, Journal of Materials Science Letters 11, 779-781 (1992).
  • [21] H. Shueiwan, J. Shyh-Ming Wu, Journal of Marine Science and Technology 16 (4), 271-274 (2008).
  • [22] K. S. Sridhar Raja, V. K. Bupesh Raja, International Journal on Design and Manufacturing Technologies 7, 29-32 (2013).
  • [23] H. M. Zakaria, Ain Shams, Engineering Journal 5, 831-838 (2014).
  • [24] K. Haider, Md. Azad Alam, A. Redhewal, V. Saxena, International Journal of Engineering Research and Applications 5, 63-69 (2015).
  • [25] S. P. Dwivedi. A. Srivastava, A. Kumar, B. Nanda, Indian Journal of Engineering and Materials Sciences 24, 133-140 (2017).
  • [26] D. Siva Prasad, Ch. Shoba, N. Ramanaiah, Journal of Materials Research and Technology 70, 1-7 (2017).
  • [27] R. Brown, (Ed), Foseco, Non-Ferrous foundryman’s handbook. In Butterworth-Heinemann Aluminium casting alloys, Elsevier (1999).
  • [28] S. Salem, T. Sjogren, L. Svensson, Metallurgical Science and Technology 25 (1), 12-22 (2007).
  • [29] L. Backerud, G. Chai, J. Tamminen,(Ed.2), Solidification characteristics of aluminium alloys, Foundry alloys 2 AFS/SKANALUMINIUM (1990).
  • [30] T. C. Tszeng, Composites B29B, 299-308(1998).
  • [31] S. Ahmed, F. R. Jones, Composites 21, 81-84 (1990).
  • [32] J. Subramanian, Z. Loh, S. Seetharaman, A. S.Hamouda, M. Gupta, Metals 2, 178-197(2012).
  • [33] K. R. Suresh, H. B. Niranjan, P. MartinJebaraj, M. P. Chowdiah, Wear 255, 638-642 (2003).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d362bc3a-762b-45b6-88e4-e33d0bd13990
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.