PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Barrier detectors versus homojunction photodiode

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the last two decades several new concepts of photodetectors to improve their performance have been proposed. New strategies are especially addressed to the group of so called high-operating-temperature detectors where - apart from increasing of operating temperature - both the size and power consumption reduction is expected. In this paper a new strategy in the photo-detector design is presented - the barrier detectors: CnBn; CnBnN+, CpBn and unipolar barrier photodiodes. In spite of considering barrier detectors based on AIIIBV bulk compounds and type-II superlattices as having theoretically a better performance than those based on HgCdTe, the latter compound is also used to fabricate barrier detectors. Among many new applications of barrier detectors the detection of explosives can be extremely important due to an increased threat of terrorist attacks. This paper presents the status of the barrier detectors and compares the performance of mid-wave HgCdTe barrier detectors and unipolar barrier photodiodes.
Słowa kluczowe
Rocznik
Strony
675--684
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
  • [1] Rogalski, A. (2011). Infrared Detectors, second edition. CRC Press, Boca Raton.
  • [2] White, A. (1983). Infrared detectors. U.S. Patent 4.679.063.
  • [3] Klipstein, P. (2003). Depletionless photodiode with suppressed dark current and method for producing the same. U.S. Patent 7.795.640.
  • [4] Klipstein, P. (2008). XBn barrier photodetectors for high sensitivity operating temperature infrared sensors. In Proceedings of SPIE 2008. Orlando, USA, 69402U-1-11.
  • [5] Brown, G. J. (2005). Type-II InAs/GaInSb superlattices for infrared detection: an overview. In Proceedings of SPIE 2005. Orlando, USA, 5783, 65-77.
  • [6] Ting, D. Z., Soibel, A., Höglund, L., Nguyen, J., Hill, C. J., Khoshakhlagh, A., Gunapala, S. D. (2011). Type-II superlattice infrared detectors. In Semiconductors and Semimetals, edited by S.D. Gunapala, D.R. Rhiger, and C. Jagadish, Elsevier, Amsterdam.
  • [7] Itsuno, A. M., Philips, J. D., Velicu, S. (2011). Design and modeling of HgCdTe nBn detectors. J. Elect. Mater. 40(8), 1624-1629.
  • [8] D’Souza, A. I., Robinson, E., Ionescu, A. C., Okerlund, D., De Lyon, T. J., Rajavel, R. D., Sharifi, H., Yap, D., Dhar, N., Wijewarnasuriya, P. S., Grein, C. (2012). MWIR InAs1-xSbx nCBn detectors data and analysis. In Proceedings of SPIE 2012. Baltimore, USA, 835333-1-8.
  • [9] D’Souza, A. I., Robinson, E., Ionescu, A. C., Okerlund, D., De Lyon, T. J., Rajavel, R. D., Sharifi, H., Dhar, N. K., Wijewarnasuriya, P. S., Grein, C. (2013). MWIR InAsSb barrier detector data and analysis. In Proceedings of SPIE 2013. Baltimore, USA, 87041U-1-7.
  • [10] Velicu, S., Zhao, J., Morley, M., Itsuno, A. M., Philips, J. D. (2012). Theoretical investigation of MWIR HgCdTe nBn detectors. In Proceedings of SPIE 2012. San Francisco, USA, 82682X-1-13.
  • [11] Rodriguez, J. B., Plis, E., Bishop, G., Sharma, Y. D., Kim, H., Dawson, L. R., Krishna, S. (2007). nBn structure based on InAs/GaSb type-II strained layer superlattices. Appl. Phys. Lett. 91, 043514-1-2.
  • [12] Aifer, E. H., Tischler, J. G., Warner, J. H., Vurgaftman, I., Bewley, W. W., Meyer, J. R., Kim, J. C., Whitman, L. J. (2006). W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency. Appl. Phys. Lett. 89(5), 053519-1-3.
  • [13] Nguyen, B. M., Razeghi, M., Nathan, V., Brown, G. J. (2007). Type-II “M” structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes. In Proceedings SPIE 2007. USA, 64790S-1-10.
  • [14] Nguyen, B. M., Hoffman, D., Delaunay, P. Y., Razeghi, M. (2007). Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure. Appl. Phys. Lett. 91(16), 163511-1-3.
  • [15] Nguyen, B. M., Hoffman, D., Delaunay, P. Y., Huang, E. K., Razeghi, M., Pellegrino, J. (2008). Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes. Appl. Phys. Lett. 93(16), 163502-1-3.
  • [16] Salihoglu, O., Muti, A., Kutluer, K., Tansel, T., Turan, R., Ergun, Y., Aydinli, A. (2012). “N” structure for type-II superlattice photodetectors. Appl. Phys. Lett. 101, 073505-1-4.
  • [17] Gautam, N., Myers, S., Barve, A. V., Klein, B., Smith, E. P., Rhiger, D., Plis, E., Kutty, M. N., Henry, N., Schuler-Sandyy, T., Krishna, S. (2013). Band engineering HOT midwave infrared detectors based on type-II InAs/GaSb strained layer superlattices. Infrared Physics & Techol. 59, 72-77.
  • [18] Wojtas, J., Rutecka, B., Popiel, S., Nawała, J., Wesołowski, M., Mikołajczyk, J., Cudziło, S., Bielecki, Z. (2014). Explosives vapors-concentrating and optoelectronic detection. Metrology and Measurement Systems, 21(2), 177-190.
  • [19] Maimon, S., Wicks, G. (2006). nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109-1-3.
  • [20] Klipstein, P., Klin, O., Grossman, S., Snapi, N., Lukomsky, I., Aronov, D., Yassen, M., Glozman, A., Fishman, T., Berkowicz, E., Magen, O., Shtrichman, I., Weiss, E. (2011). XBn barrier photodetectors based on InAsSb with high operating temperatures. Opt. Eng. 50(6), 061002-1-10.
  • [21] Klem, J. F., Kim, J. K., Cich, M. J., Hawkins, S. D., Fortune, T. R., Rienstra, J. L. (2010). Comparison of nBn and nBp mid-wave barrier infrared photodetectors. In Proceedings of SPIE 2010. San Francisco, USA, 76081P.
  • [22] Ting, D. Z., Hill, C. J., Soibel, A., Nguyen, J., Keo, S. A., Lee, M. C., Mumolo, J. M., Liu, J. K., Gunapala, S.D. (2010). Antimonide-based barrier infrared detectors. In Proceedings of SPIE 2010. Orlando, USA, 76601R-1-12.
  • [23] Plis, E. A. (2014). InAs/GaSb type-II superlattice detectors. Advances in Electronics 246769-1-12.
  • [24] Wróbel, J., Martyniuk, P., Plis, E., Madejczyk, P., Gawron, W., Krishna, S., Rogalski, A. (2012). Dark current modeling of MWIR type-II superlattice detectors. In Proceedings of SPIE 2012. Baltimore, USA, 8353-1−16.
  • [25] Klem, J. F., Hawkins, S. D., Kim, J. K., Leonhardt, D., Shaner, E. A. (2013). GaSb-based infrared detectors utilizing InAsPSb absorbers. J. Vac. Sci. Technol. B 31(3), 03C115-1-7.
  • [26] Itsuno, A. M., Philips, J. D., Velicu, S. (2012). Mid-wave infrared HgCdTe nBn photodetector. Appl. Phys. Lett. 100(16), 161102-1-3.
  • [27] Schubert, E. F., Tu, L.W., Zydzik, G. J., Kopf, R. F., Benvenuti, A., Pinto, M. R. (1991). Elimination of heterojunction band discontinuities by modulation doping. Appl. Phys. Lett. 60(4), 466-468.
  • [28] Savich, G. R., Pedrazzani, J. R., Sidor, D. E., Maimon, S., Wicks, G. W. (2011). Dark current filtering in unipolar barrier infrared detectors. Appl. Phys. Lett. 99, 121112-1-3.
  • [29] Savich, G. R., Pedrazzani, J. R., Sidor, D. E., Maimon, S., Wicks, G. W. (2012). Use of unipolar barriers to block dark currents in infrared detectors. In Proceedings of SPIE 2012. Orlando, USA, 8022T.
  • [30] APSYS Macro/User’s Manual ver. 2011. Crosslight Software, Inc. (2011).
  • [31] Casselman, T. N., Petersen, P. E. (1980). A comparison of the dominant Auger transitions in p-type (HgCd)Te. Solid State Commun. 33, 615-619.
  • [32] Hansen, G. L., Schmidt, J. L., Casselman, T. N. (1982). Energy gap versus alloy composition and temperature in Hg1-xCdxTe. J. Appl. Phys., 53(10), 7099-7101.
  • [33] Scott, W. (1972). Electron mobility in Hg1-xCdxTe. J. Appl. Phys. 43(3), 1055-1062.
  • [34] Hansen, G. L., Schmidt, J. L. (1983). Calculation of intrinsic carrier concentration in Hg1-xCdxTe. J. Appl. Phys., 54(3), 1639-1640.
  • [35] Hurkx, G. A., Klaassen, D. B. M., Knuvers, M. P. G. (1992). A new recombination model for device simulation including tunneling. IEEE Trans. Electron Devices, 39(2), 331-338.
Uwagi
EN
This paper has been done under the financial support of the Polish National Science Centre, Project: UMO-2012/07/D/ST7/02564 and PBS 849. The authors thank Professor Antoni Rogalski for a helpful and beneficial discussion.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d362587f-abdc-49cf-a9c4-b7d93e0606d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.