PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Autonomous Robot Project Based on the Robot Operating System Platform

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Projekt robota autonomicznego bazującego na platformie Robot Operating System
Języki publikacji
EN
Abstrakty
EN
This article presents the concept of an autonomous mobile robot running on the ROS system and using advanced algorithms for 2D map generation and autonomous navigation. The authors focused on presenting the hardware platform, the Linux-based software and the Robot Operating System (ROS) platform. This article also introduces an algorithm that provides the generation of a 2D map of the surroundings, autonomous robot driving and remote control of the device. Measurements of the temperature of the computer helped in the decision on which cooling system to use.
PL
W artykule przedstawiono koncepcję autonomicznego robota mobilnego pracującego w systemie ROS i wykorzystującego zaawansowane algorytmy do generacji dwuwymiarowej mapy oraz autonomicznej nawigacji. Autorzy skupili się na przedstawieniu platformy sprzętowej urządzenia oraz na zaimplementowanym oprogramowaniu opartym na systemie LINUX oraz platformie Robot Operating System (ROS). W artykule zaprezentowano również algorytm realizujący generację dwuwymiarowej mapy otoczenia, autonomiczną jazdę robota oraz zdalne sterowanie urządzeniem. Wykonane pomiary temperatury komputera pozwoliły na podjęcie decyzji dotyczącej zastosowanego układu chłodzenia.
Słowa kluczowe
Rocznik
Strony
85--108
Opis fizyczny
Bibliogr. 37 poz., fot., rys., tab., wykr.
Twórcy
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, 2 Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, 2 Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, 2 Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
  • [1] Borys, Szymon, Wojciech Kaczmarek, and Dariusz Laskowski. 2020. “Selection and optimization of the parameters of the robotized packaging process of one type of product”. Sensors 20 (18) : 5378-1-21.
  • [2] Kaczmarek, Wojciech, Bartłomiej Lotys, Szymon Borys, Dariusz Laskowski, and Piotr Lubkowski. 2021. "Controlling an industrial robot using a graphic tablet in offline and online mode”. Sensors 21 (7) : 2439-1-20.
  • [3] Panasiuk, Jarosław, Wojciech Kaczmarek, Michał Siwek, and Szymon Borys. 2022. “Test Bench Concept for Testing of Gripper Properties in a Robotic Palletizing Process”. Problemy mechatroniki. Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa / Problems of Mechatronics. Armament, Aviation, Safety Engineering . 13 (2) : 51-64.
  • [4] Płaczek, Ewa, Kornelia Osieczko. 2020. „Zastosowanie robotów AGV w intralogistyce”. Zarządzanie Innowacyjne w Gospodarce i Biznesie 1 (30) : 165-176.
  • [5] Matthews, Kayla. 2018. "How Robot Precision Has Evolved, Enabling More Uses”. Robotics Business Review . (https://www.roboticsbusinessreview.com/manufacturing/robot-precision-evolves/)
  • [6] Jayawardana, J.K. Rahul, and T. Sameera Bandaranayake. 2021. "A review of unmanned planetary exploration on Mars”. International Research Journal of Modernization in Engineering Technology and Science 3 (2) : 451-462.
  • [7] Besseghieur, Khadir Lakhdar, Radosław Trębiński, Wojciech Kaczmarek, and Jarosław Panasiuk. 2020. “From Trajectory Tracking Control to Leader-Follower Formation Control”. Cybernetics and Systems 5 (27) : 339-356.
  • [8] Prusaczyk, Piotr, Wojciech Kaczmarek, Jarosław Panasiuk, and Khadir Besseghieur. 2019. “Integration of robotic arm and vision system with processing software using TCP/IP protocol in industrial sorting application”. AIP Conference Proceedings 2078 : 020032-1-8.
  • [9] Siwek, Michał, Leszek Baranowski, Jarosław Panasiuk, and Wojciech Kaczmarek. 2019. “Modeling and simulation of movement of dispersed group of mobile robots using Simscape multibody software”. AIP Conference Proceedings 2078 : 020045-1-5.
  • [10] Besseghieur, Khadir Lakhdar, Radosław Trębiński, Wojciech Kaczmarek, and Jarosław Panasiuk. 2018. “Trajectory tracking control for a nonholonomic mobile robot under ROS”. Journal of Physics: Conf. Series 1016 : 012008-1-5.
  • [11] Besseghieur, Khadir Lakhdar, Wojciech Kaczmarek, and Jarosław Panasiuk. 2017. “Multi-robot Control via Smart Phone and Navigation in Robot Operating System”. Problemy mechatroniki. Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa / Problems of Mechatronics. Armament, Aviation, Safety Engineering 8 (4) : 37-46.
  • [12] Ghael, Hirak Dipak, L. Solanki, and Gaurav Sahu. 2021. "A Review Papier on Raspberry Pi and its Applications”. International Journal of Advances In Engineering and Management (IJAEM) 2 (12) : 225-227.
  • [13] Gil De La Iglesia, Didac. 2012. Tangible User Interfaces. Laboratory Guide. Master in Social Media and Web Development, Linnaeus University.
  • [14] Slamtec. 2019. RPLIDAR 360 Degree Laser Range Scanner Interface Protocol and Application Notes. Shanghain Slamtec. Co.
  • [15] TECO ELECTRIC CO.: Motor Specification TFK280SC-21138-45. http://cdn.sparkfun.com/datasheets/Robotics/RP6%20motor%20TFK280SC-21138-45.pdf (access on 1.02.2022).
  • [16] L298N Motor Driver Controller Board. Instructables. 2015. https://www.makerfabs.com/l298n-motor-driver-board.html (access on 1.02.2022).
  • [17] Docter, Quentin, and Jon Buhagiar. 2019. Introduction to TCP / IP (from https://www.researchgate.net/publication/332460567_Introduction_to_TCPIP).
  • [18] Dudek, Wojciech. 2013. Wykorzystanie czujnika Kinect i systemu ROS do sterowania ruchem robota mobilnego (praca dyplomowa). Warszawa: Politechnika Warszawska.
  • [19] Quigley, Morgan, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. 2009. ROS: an open-source Robot Operating System. In Proceedings of the ICRA workshop on open source software 3 (3.2).
  • [20] Quigley, Morgan, Brian Gerkey, and Wiliam D. Smart. 2015. Programming Robots with ROS. O’Reilly.
  • [21] Borkowski, Mateusz, Krystian Łygas. 2017. “Model robota szeregowego typu SCARA w środowisku ROS”. Autobusy : technika, eksploatacja, systemy transportowe 18 (6) : 551-554.
  • [22] Kam, Hyeong Ryeol, Sung Ho Lee, Taejung Park, and Chang Hun Ki. 2015. “RViz: a toolkit for real domain data visualization”. Telecomunication Systems 60 (2) : 1-9.
  • [23] Kang, Yeon, Donghan Kim, and Kwangjin Kim. 2019. URDF Generator for Manipulated Robot. In Proceedings of the Third IEEE International Conference on Robotic Computing (IRC).
  • [24] Peake, Ian, Joseph La Delfa, Ronal Bejarno, and Jan Olaf Blech. 2021. Simulation Components in Gazebo. In Proceedings of the 22nd IEEE International Conference on Industrial Technology (ICIT) pp. 1169-1175.
  • [25] Kuzin, Sergei, and Gabor Sziebig. 2020. SROS: Educational, Low-cost Autonomous Mobile Robot Design Based on ROS. In Proceedings of the 2020 IEEE/SICE International Symposium on System Integration (SII).
  • [26] Guerra, N. Patricia, Pablo Javier Alsina, Adelardo A.D. Medeiros, and Antônio P. Araújo Jr. 2004. Linear Modelling and Identification of a Mobile Robot With Differential Drive. In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics. Setúbal, Portugal, August 25-28, 2004.
  • [27] Michał Siwek, Jarosław Panasiuk, Leszek Baranowski, Wojciech Kaczmarek, and Szymon Borys. 2022. “Trajectory Tracking Control of a Mobile Robot with the ROS System”. Problemy mechatroniki. Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa / Problems of Mechatronics. Armament, Aviation, Safety Engineering 4 (50) : 67-84.
  • [28] Marin-Plaza, Pablo, Ahmed Hussein, David Martin, and Arturo de la Escalera. 2018. “Global and Local Path Planning Study in ROS-Based Research Platform for Autonomous Vehicles”. Journal of Advanced Transportation 2018 : 6392697.
  • [29] Fox, Dieter, Wolfram Burgard, and Sebastian Thrun. 1997. “The Dynamic Window Approach to Collision Avoidance”. IEEE Robotics & Automation Magazine 4 (1 ) : 23-33.
  • [30] Zheng, Kaiyu. 2017. ROS Navigation Tuning Guide. In Robot Operating System (ROS) - The Complete Reference (Volume 6). Springer International Publishing.
  • [31] Fox, Dieter, Wolfram Burgard, Frank Dellaert, and Sebastian Thrun. 1999. “Monte Carlo Localization: Efficient Position Estimation for Mobile Robots”, In Proceedings of the Sixteenth National Conference on Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial Intelligence, July 18-22, 1999, Orlando, Florida, USA.
  • [32] Grisseti, Giorgio, Cyrill Stachniss, Wolfram Burgard. 2005. “Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters”, IEEE Transactions on Robotics. 23 (1) : 34-46.
  • [33] Yuen, D.C.K., and B. A. MacDonald. 2002.A comparison between Extended Kalman Filtering and Sequential Monte Carlo techniques for simultaneous localisation and map-building. In Proceedings of the 2002 Australasian Conference on Robotics and Automation, Auckland, Australia, pp. 111–116.
  • [34] Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. 2005. Probabilistic Robotics (Intelligent Robotics and Autonomous Agent). The MIT Press.
  • [35] Montemerlo, M., N. Roy, S. Thrun, D. Hähnel, C. Stachniss, and J. Glover. CARMEN The Carnegie Mellon Robot Navigation Toolkit. (Available online: http://carmen.sourceforge.net/).
  • [36] Thrun, Sebastian, Yufeng Liu, Daphne Koller, Andrew Y. Ng, Zoubin Ghahramani, and Hugh Durrant-Whyte: “Simultaneous localization and mapping with sparse extended information filters”. Int. Journal of Robotics 23 (7-8).
  • [37] Behl, Madhur. ROS Transformations and frames. University of Virginia. (from: https://linklab-uva.github.io/autonomousracing/assets/files/L11-compressed.pdf).
Uwagi
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2. The study was co-financed by the Military University of Technology (Warsaw, Poland) under Research project UGB 893/2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d35c1434-46a5-4405-9cf0-2904333e297e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.