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Abstract. This article presents the concept of an autonomous mobile robot running on 

the ROS system and using advanced algorithms for 2D map generation and autonomous 

navigation. The authors focused on presenting the hardware platform, the Linux-based 

software and the Robot Operating System (ROS) platform. This article also introduces an 

algorithm that provides the generation of a 2D map of the surroundings, autonomous 

robot driving and remote control of the device. Measurements of the temperature of the 

computer helped in the decision on which cooling system to use.  

Keywords: robotics, mobile robot, map generation, ROS, Linux 

 

 

                                                                  

 
 

 

 

  
 

 

 
 

 

PROBLEMS OF MECHATRONICS 
ARMAMENT, AVIATION, SAFETY ENGINEERING 

 

 13, 4 (50), 2022, 85-108 

PROBLEMY MECHATRONIKI 
UZBROJENIE, LOTNICTWO, INŻYNIERIA BEZPIECZEŃSTWA 

 

ISSN 2081-5891 

E-ISSN 2720-5266  



Sz. Cherubin, W. Kaczmarek, N. Daniel 86 

1. INTRODUCTION 

Dynamic technological development has been observed in the world  

for a long time, especially in the field of robotics. It already has a significant 

impact on people's everyday lives, especially in terms of replacing human work 

with activities carried out by machines. This phenomenon is particularly visible 

in industry [1-3], but it can also be found more often in the area of services.  

Most of the robots used in the world are fully autonomous constructions that are 

able to perform monotonous inspection works on their own and act as 

autonomous platforms for fleet management and control of intralogistic processes 

[4]. Nevertheless, such designs are also widely used in the military sphere. Using 

them provides the opportunity to carry out reconnaissance, support and combat 

operations in dangerous or inaccessible terrain. It is extremely important for 

humans, as not involving human resources in tasks that are dangerous to human 

life or health increases the chance of survival or at least minimising any damage 

to the health. The use of highly advanced sensory devices in modern robots allows 

the use of perceptual abilities that are much more accurate and reliable compared 

to human organs – especially senses such as vision and hearing [5]. The resistance 

of robots to an environment dangerous for humans is particularly visible in tasks 

related with space exploration, where unmanned mobile robots can successfully 

operate on other planets of our solar system: Sojourner, Spirit, Opportunity, 

Curiosity and Perseverance [6]. For mobile robots, the Robot Operating System 

(ROS) software platform is often used, as it is a free platform and can be installed 

on the free LINUX operating system [7-11].  

This article presents the developed autonomous robot that uses advanced 

SLAM algorithms for its operation, which allows the robot to generate a 2D  

map of its surroundings and locate itself on the generated map. The robot 

developed here is a design that uses ROS software running on the Linux  

kernel-based operating system – Ubuntu Mate.  

 

2. AUTONOMOUS ROBOT PLATFORM 

A robot comprises a set of electronic components and peripheral devices 

transmitting information and control commands with others, allowing the robot 

to perform its assigned tasks according to the implemented workflow algorithm. 

In order to function properly, the vehicle required a properly selected hardware 

and software structure. The main tasks performed by the developed robot were: 

 generation of a digital, 2D map of the surroundings, 

 location in space using proprioceptive odometry, 

 autonomous driving, 

 operating in a remote-control mode. 
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2.1. Hardware structure 

The hardware structure of the robot consisted of appropriately selected 

electronic and mechanical components (Fig. 2.1). 
 

 
 

Fig. 2.1. Block diagram of the robot's hardware structure. 
 

The heart of the robot was a single-board Raspberry Pi 4B computer (Table 

2.1) with a Cortex-A72 64-bit processor acting as the robot's on-board computer 

and the supporting Arduino MEGA (ATmega2560) microcontroller responsible 

for motor control. The on-board computer was the unit responsible for processing 

any data coming from the sensors and for wireless data transmission to the 

operator's personal computer. The microcontroller, which was connected to the 

central unit via a USB connector, was responsible for receiving signals from the 

encoders and developing control commands transmitted directly to the motors via 

the GPIO pins. The purpose of using the Arduino MEGA microcontroller (Table 

2.2) was to relieve the on-board computer in order to handle four system 

interrupts necessary for correct control (reading data from the encoders). 

Table 2.1. Raspberry Pi 4B computer specifications [12] 

Parameter Value 

Processor Broadcom BCM2711, Cortex-A72 64-bit SoC, ARM8v-A,  

4 x 1.5 GHz 

RAM 4 GB LPDDR4-3200 SDRAM 

Memory Flash: micro SD card slot 

Supply voltage 5.1 V, 3 A via USB C 

Wi-Fi interface 2.4 GHz and 5.0 GHz IEEE 802.11ac 

Communication 

interfaces 
UART, SPI, I2C, GPIO, DSI, CSI, USB 2.0, USB 3.0 
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Table 2.2. Arduino MEGA microcontroller specifications [13] 

Parameter Value 

Microcontroller ATmega2560 

Clock frequency 16 MHz 

Flash memory 256 kB 

SRAM 8 kB 

EEPROM 4 kB 

Analogue I pins 16 

Digital I/O pins 54 (15 PWM outputs) 

Supply voltage 7 – 12 V 

The main source of information obtained from the surroundings was  

the RPLidar A3M1 laser scanner by Slamtec [14]. It was responsible for 

generating the data used to create a digital map of the surroundings. It was  

an allothetic source of information with high accuracy and high speed of work 

due to the use of a laser beam in the infrared range as a data carrier. Table 2.3. 

presents the basic operating parameters of the RPLidar A3M1. 

Table 2.3. Basic operating parameters of the RPLidar A3M 

Parameter Indoor operating mode Field operation mode 

Range White objects: 25 m 

Black objects: 10 m 

White objects: 25 m 

Black objects: 8 m 

Scan frequency Nominal value: 15 Hz, changeable in range: 5-20 Hz 

Sampling frequency 16 kHz 16 / 10 kHz 

Angular resolution 0.225 ° 0.225 / 0.36 ° 

Communication 

interface 
TTL UART 

Transmission speed 256 000 bps 

The ROVER 5-2 platform was used as the chassis in the developed project. 

It had a crawler track system to perform no holonomic motion. The platform was 

equipped with two TECO TFK280SC DC motors with a gear ratio of 87:1. They 

generated an output torque of 1 Nm and a rotational speed of 8804 rpm [15].  

The sensors used to acquire data on the robot's position in space in the form of 

the number and direction of rotation of the motors were incremental encoders 

using the Hall effect with a resolution of 333.33 per revolution (Fig. 2.2).   
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Fig. 2.2. Incremental encoder used in the robot design 
 

The DC motors driving the platform were controlled by a two-channel 

L298N controller based on a double H-bridge. The controller achieved current 

efficiency on each of the channels equal to 2 [A]. Additionally, the maximum 

voltage supplying the motors was 35 [V]. This controller was protected against 

overheating by an added heat sink (Fig. 2.3).  

 
 

Fig. 2.3. Schematic diagram of the L298N DC motor controller [16] 
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The completed model of an autonomous robot is shown in Figure 2.4. 

 

 
 

Fig. 2.4. Completed model of the autonomous robot 

 

2.2. Software 

 

The presented solution used the Ubuntu MATE operating system, one 

compatible with ROS software.  

 

2.2.1. Ubuntu MATE 

The Ubuntu MATE system (Figure 2.5) was a complete GNU/Linux 

operating system distribution using MATE as the desktop environment.  

 

Fig. 2.5. Screen of a computer with Ubuntu MATE installed 
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This system provided great support for ROS software and was a version of 

the system that used much fewer computing resources of the CPU compared to 

the classic version of Ubuntu. The system version 20.04 Focal Fossa was installed 

on the robot's platform. It was the latest version of this operating system, with the 

longest technical support at that moment. The TCP/IP network was used for 

communication between the robot's central unit and the user's personal computer 

[17]. The communication was provided using the ssh communication protocol.  

 

2.2.2. Robot Operating System 

As previously mentioned, the software used to implement control algorithms 

and responsible for acquiring and processing of data from sensory systems was 

the ROS platform. It was a powerful programming platform running on a free 

software basis. Its main application in a robotic environment was system service 

responsible for control of humanoid, industrial and mobile robots. It was created 

in 2007 in California thanks to the cooperation between Stanford University and 

a robotics company – Willow Garage. Since its creation, the platform has been 

constantly developed by an international group of programmers dealing with 

robotics [18]. 

The operation of the ROS platform was based on the communication of 

processes, which were simultaneously working nodes responsible for various 

functions of the robot (Fig. 2.6). They formed a network in which the processes 

were interconnected. This ensured that each node had access to the network, 

cooperation between them and the ability to monitor the type of data sent to the 

network. ROS enabled the exchange of messages in the form of topics, services, 

parameters and actions [19] and [27].  

 

 
Fig. 2.6. Diagram of node cooperation in the ROS environment 
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The ROS environment supported programs developed in high-level 

languages: Python and C++. Catkin was responsible for building the structures. 

This was an official compiler made up of CMake macros and custom scripts 

developed in Python. Catkin was the successor to the basic ROS compiler – 

rosbuild. Compared to its predecessor, it featured significantly more 

functionality. As with CMake, catkin automatically managed the compilation 

processes, so that the programme was not compiled independently, but files with 

compilation rules for a specific environment were generated. For GNU/Linux, 

makefiles were generated by using scripts derived from Python, the user of the 

catkin compiler could automatically search for packages and develop multiple 

large format projects simultaneously [20]. 

The ROS environment also had many graphical tools that allowed control of 

the operation of individual vehicle components and software packages.  

In addition, it was equipped with tools that allowed one to visualize vehicle 

operation on the basis of data from sensory systems, as well as to simulate the 

vehicle operation. The most commonly used tools were:  

 RQT package – a platform included in the ROS software that enabled  

the implementation of various GUI tools in the form of plug-ins.  

The package was used to manage all tools in a single window.  

The platform was the most commonly used software for the diagnostics 

of robots [21]. In addition, the platform allowed visualization of the 

structure of the nodes and the connections between them, which greatly 

facilitated the understanding of ROS operation. What is more, the RQT 

package enabled node analysis by mirroring the transformation tree 

launched by the basic node of the rqt_tf_tree system and invoking  

the node connection network – rqt_graph. 

 Rviz (Fig. 2.7) – a package used for three-dimensional visualization of 

messages in ROS, which was developed at a Korean university [22].  

 

Fig. 2.7. Rviz graphic visualizer panel 
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It allows the visualization of data from sensors and depicts the robot's 

environment. In addition, it permits visualization of data from the 

perspective of a selected coordinate system based on data from the tf 

library. It also enabled graphical representation of the robot's URDF 

model and kinematic analysis of its motion. Additionally, the interface of 

the graphical tool enabled the creation of a digital map of the environment 

surrounding the robot based on sensor data. 

 URDF (Unified Robot Description Format) – used to determine the 

kinematics and dynamics of the robot and was also used to represent the 

robot [23]. The format was used in the rviz visualizer and in the Gazebo 

simulator. URDF files were created using HTML. Based on the data 

contained in the unified format, it was possible to calculate the spatial 

pose of the robot and detect potential programming errors. URDF files 

with the appropriate plug-ins could be generated from CAD software.  

An example description of a humanoid robot using URDF is shown in 

Fig. 2.8. 

 
Fig. 2.8. Description of the humanoid robot representation using the URDF format 

 

 Gazebo – a free ROS program for conducting 3D simulations of robot 

functioning, created in 2000 at the University of Southern California  

as a part of the Player project. It is one of the most popular robotics 

simulators that uses the OGRE (Object-Oriented Graphics Rendering 

Engine) graphics engine. This is because of its high efficiency and fully 

accurate mapping of reality and the laws of physics for which the ODE 

(Open Dynamics Engine) is responsible [24]. 

 

3. ALGORITHMS 

A robot requires a finite sequence of predefined and consecutive actions  

in order to work correctly and complete its tasks.  

A simplified block diagram of the robot's algorithm that generates a 2D map, 

autonomous driving and remote control is shown in Fig. 3.1. 
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Fig. 3.1. Simplified block diagram of the robot algorithm 
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3.1. Control algorithms 

The robot, apart from autonomous driving, can be remotely controlled.  

It was implemented through the ROS network and the ssh communication 

protocol. More specifically, the ROS network used a master-slave relationship in 

a duplex transmission. The central unit of the robot was ROS_MASTER_URI, 

which was responsible for the mutual location of the running nodes and  

the control of the transmitted data. The operator's computer unit was the host.  

From there, it was possible to visualize and control the robot's operations.  

The network of nodes responsible for remote control of the effectors is presented 

in Fig. 3.2.  

 

 
 

Fig. 3.2. Network of nodes responsible for remote control 

 
The teleop_twist_keyboard node was responsible for handling the keys on 

the user's personal computer and converting the registered keys into an 

appropriate stream of commands in the form of cmd_vel messages. This message 

was a PWM signal with a length selected according to the vehicle speed received 

by the serial_node. This node was a representation of the rosserial packet,  

a communication protocol responsible for converting ROS messages, topics, and 

services for use in serial communication [25]. In this case, the node was 

responsible for communication between the robot's CPU and the Arduino MEGA 

connected with the USB connector. It then transmitted the control signals 

separately for each motor to the diff_tf node. It consisted of a differential drive 

package that transmitted the control signals to the motors. This node was also 

responsible for reading data from the encoders and transmitting odometry 

information in the form of tf transformation messages for the navigation stack. 

Figure 3.3 shows a diagram of the robot with a differential drive. Its mathematical 

development has been described in great detail by P. J. Alsin in [26]. 

The autonomous driving of the robot took place using the navigation_stack. 

This was an advanced algorithm responsible for estimating the route of the 

vehicle movement to a point set by the operator and transmitting appropriate 

control signals to the vehicle's motors to reach this point. 
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Fig. 3.3. Diagram of a robot with a differential drive [26] 

 
The move_base package was the main node of the navigation stack that 

combined a global and local planner and supported two cost maps: local and 

global. These were the mandatory elements required to perform the navigation 

tasks. The global planner was responsible for planning the trajectory path from 

the starting point to the destination. It was based on Dijkstra's heuristic algorithm. 

This was a "greedy algorithm" for finding the shortest path on the map from  

the source vertex to the remaining vertices in the graph, characterized by  

a non-negative edge weight [28]. The role of the local planner was performed by 

the DWA algorithm – the dynamic windows method. It was proposed by  

D. Fox, W. Burgard and S. Thrun in 1997 [29]. The algorithm was responsible 

for generating control commands in the form of the linear and angular velocities  

(v, ω) that were optimal for the local conditions of the vehicle, aimed at avoiding 

obstacles on the path. The approach took into account a periodically short time 

interval when calculating the next control command. This avoided the enormous 

complexity of the traffic planning problem. The algorithm was implemented in 

the 5 steps proposed by K. Zheng [30]: 

1. Sample discretization in the robot control space (dx, dy, dΘ). 

2. For each of the velocity samples a simulation was made based on the 

current state of the robot, how its state would change if the sampled speed 

was applied to the effectors for a short period of time. 

3. Assessing each simulation trajectory using metrics such as target 

proximity, global path proximity and speed. Rejection of trajectories 

causing a collision. 

4. Selection of the most accurate trajectory and sending it to the vehicle's 

effectors. 

5. Execute and repeat. 
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Figure 3.4 shows a block diagram of the navigation stack. It contained the 

previously mentioned move_base node, which was responsible for generating the 

map of the surroundings and retrieving the previously prepared map from the data 

memory.  

 
 

Fig. 3.4. Block diagram of the navigation stack. 

 

Additionally, the diagram shows the relationship between the previously 

mentioned nodes with the components responsible for publishing data about the 

surroundings. The published data must be in the form of appropriate message 

types, which are also shown in the diagram. In order to work properly, the 

navigation stack required the use of the ROS environment. In addition to using 

the appropriate environment, it was also necessary to correctly configure it and 

deliver the required types of messages. A mandatory node in the navigation stack 

was the amcl node. It was a probabilistic system of locating a moving robot in 

two-dimensional space. The system was responsible for Monte Carlo adaptive 

localisation, which used a particle filter to track the robot's position on a known 

map. It was an algorithm presented by D. Fox in 1999 [31]. Equally important 

was the information on the relationships between the sensor coordinate frames 

and the odometry information published by the library, tf. The publication of the 

odometry information was performed by the diff_tf node. This was described in 

the discussion on remote control of the robot. Additionally, odometry information 

must be published in the form of the nav_msgs/Odometry message.  

To move in the environment without collisions, the navigation stack used 

information from a laser scanner, which published information in the form of  

a sensor_msgs/LaserScan message. The following control messages were used to 

control the robot's motors: (cmd_vel.linear.x, cmd_vel.linear.y, 

cmd_vel.angular.z).  
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They were sent in the form of a geometry_msgs/Twist message and 

converted into commands that properly controlled the operation of the motors.  

Figure 3.5 shows the network of operating nodes responsible for the correct 

implementation of autonomous navigation. 

 
 

Fig. 3.5. Diagram of nodes responsible for autonomous navigation 
 

Figure 3.6 shows the map of the room, with the global and local maps 

superimposed on it. They were used for the implementation of autonomous 

navigation tasks. In addition, the estimated path of the vehicle to reach the set 

target position was marked on the map. 

 

 
 

Fig. 3.6. Map showing the implementation of autonomous navigation by a robot 
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3.2. Map generating algorithm 
 

The advanced SLAM algorithm was responsible for generating a two-

dimensional map of the robot's surroundings. The algorithm used in the project is 

gmapping, which was an open access package developed by the team of  

G. Grisetti, C. Stachniss and W. Burgard [32]. It has been the most widely used 

algorithm for SLAM problems. It used an Extended Kalman Filter (EKF)  

to locate the robot, which, in comparison to the Monte Carlo methods, was less 

computationally expensive for each mean-dimensional state space. The 

comparison of both algorithms was conducted by D. Yuen and A. MacDonald in 

2002 [33]. Gmapping was a planar algorithm responsible for solving SLAM 

problems based on proprioceptive odometry and measurements from a laser 

scanner, while the hector_slam package used only data from a laser scanner.  

The gmapping package was based on the presence a grid representation, 

which represented the robot's environment map as binary fields of random 

variables, each of which represented the presence of an obstacle. Presence grid 

maps were algorithms used in the probability of generating a map assuming  

a known robot position. According to the well-known Bayesian approach [4], 

used to combine transitions between robot positions and sensor measurements, 

the algorithm solved the SLAM problem using the Rao-Blackwellized particle 

filter. Its key idea was a posteriori estimation p(x1:t,m|z1:t,u1:t-1) of the m map, and 

the robot's trajectory x1:t = x1, …, xt. Estimation was based on observations  

z1:t = z1, …, zt and odometry measurements u1:t-1 = u1, …, u1:t-1.  

The Rao-Blackwellized particle filter for the SLAM problem used the 

following factorization [32]: 

𝑝(𝑥1:𝑡, 𝑚|𝑧1:𝑡, 𝑢1:𝑡−1) = 𝑝(𝑚|𝑥1:𝑡, 𝑧1:𝑡) ∙ 𝑝(𝑥1:𝑡|𝑧1:𝑡, 𝑢1:𝑡−1) (3.1) 

At first, this factorization allowed an estimation of the robot's trajectory, and 

then on its basis calculated a map of its surroundings. Due to the strong 

dependence of the map on the trajectory, this approach provided high 

computational efficiency. This technique is often referred to as Rao-

Blackwellization [32]. 

Matching of scans, observation model and scoring method of the motion 

model was done using a particle-based scan matching technique – "vasco", which 

was part of Carnegie Mellon Robot Navigation Toolkit (CARMEN) [35].  

This technique performed a gradient search based on the reliability function of 

the current observation, taking into account the current grid map. It aimed to find 

the most likely pose by matching the current observations with the map produced 

so far. The equation describing this technique has the following form [32]: 

𝑥𝑡
(𝑖)

= 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑥|𝑚𝑡−1
(𝑖)

, 𝑧𝑡 , 𝑥𝑡
′(𝑖)

) (3.2) 

where: 𝑥𝑡
′(𝑖)

 - this is the first supposition, zt - current scan, 𝑚𝑡−1
(𝑖)

 - reference map. 
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Bayes' rule is used to solve equation (3.2) – the pose with the highest 

observation probability was sought 𝑝(𝑧𝑡|𝑚, 𝑥). In order to calculate this 

probability, the "beam endpoint mode” was used [36]. In this model, the 

individual beams within the scan were considered independent. The beam 

probability was calculated based on the distance between the beam end point and 

the nearest obstacle from that point. In order to obtain quick calculations  

a tangled, local grid map was used [32].  

The ROS software for generating a digital map, apart from an advanced 

mapping algorithm, also required an appropriate transformation of the coordinate 

systems representing each of the robot members. This was carried out by the tf 

library, which was responsible for the scene graph concept, reflected in the form 

of a hierarchy tree. The tree root was a representation of the environment map, 

and each of its vertices was a geometric transformation, translation, or rotation 

between the systems of each member [37]. Figure 3.7 shows the transformation 

tree of the robot’s coordinate systems generated by the rqt_tf_tree package. 

The laser subtree reflected the coordinate system in a polar form represented 

by a laser scanner, while the base_link was a representation of the coordinate 

system of the robot platform. Odom was the frame responsible for locating the 

robot based on the data provided by the diff_tf node, which was responsible for 

acquiring data from encoders and transforming them into odometry information. 

The root of the tree was the map frame.  

 

 
 

Fig. 3.7. Transformation tree of robot coordinate systems 
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Figure 3.8 shows the generated digital, two-dimensional map of the room 

generated using the gmapping package. 
 

 
 

Fig. 3.8. Two-dimensional map of the room generated using the gmapping algorithm 

 

4. VEHICLE PLATFORM TESTS 

 
Due to the type of computer and its cooling method, the completed robot 

was tested in terms of the processor operating temperature and the entire central 

unit. Measurements were made by reading the processor temperature by 

triggering a command in the system shell and measuring the temperature of the 

on-board computer with a thermal imaging camera. They were performed at the 

moment of starting the CPU and the software responsible for the nominal 

operation of the vehicle, and then after 5, 10 and 15 minutes of operation. 

Measurements were taken in the following configurations: 

 unit without cooling, 

 unit with passive cooling in the form of a housing, 

 unit with passive and active cooling. 

Figure 4.1 shows an exemplary photo of the operating vehicle central unit 

with cooling taken with a thermal imaging camera.  
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Fig. 4.1. Working central unit with passive cooling after 5 minutes of operation 

 

The results of the temperatures obtained are shown as graphs. Figure 4.2 

shows the results of temperature measurements of the CPU with a thermal 

imaging camera, while Figure 4.3 shows a graph of the CPU temperature. 

 

 

Fig. 4.2. Temperature graph of the CPU using different cooling methods 
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Fig. 4.3. CPU temperature graph using different cooling methods 
 

The measurement of the temperature reached by the vehicle's CPU and its 

processor during rated operation was aimed at selecting the most favourable 

method of cooling the robot's CPU. Cooling is an extremely important aspect of 

an autonomous robot design due to the protection of its components against 

overheating and damage.  

When the RPi 4B temperature is above 80oC the processor is throttled, 

resulting in an unwanted reduction in the performance of the computing unit. 

Considering the results of the tests, the lowest temperatures were achieved using 

the active cooling method, which provided a 34% reduction in temperature 

compared to the unit without cooling. However, due to the use of the vehicle in 

various conditions and the additional energy consumption of the fans, the passive 

cooling method, which reduced the temperature of the CPU by 17%, is the most 

advantageous. For the temperature reached by the CPU, the difference between 

the active and passive methods is about 8%. 

 

5. CONCLUSIONS 

 
The development of robotics has an increasing impact on people's daily 

lives. Engineers are increasingly trying to replace people in labour-intensive, 

monotonous and dangerous jobs by developing new types of robots.  

This phenomenon is particularly visible in industry but increasing numbers of 

robots can also be found in the services area or even in private life. Alongside the 

emerging designs, where powerful computers are required, increasingly 

sophisticated software is being developed, without which there would be no 

autonomous machines.  
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An example here are the advanced algorithms used to solve SLAM 

(Simultaneous Localization and Mapping) problems, which make robots more 

autonomous and increasingly safe for humans.      

The autonomous robot presented in the article is equipped with advanced 

sensory devices (including the RPLidar A3M1 laser scanner by Slamtec), and the 

algorithms used to control the robot can be used in other designs of mobile robots. 

Thanks to the use of the LINUX OS and the Robot Operating System 

programming platform, all operations performed by the robot were executed in 

real time. The proposed design and software met the requirements, and the use of 

a laser scanner allowed for the implementation of innovative and advanced 

algorithms for autonomous navigation and generation of two-dimensional maps. 

This allowed the robot to move independently in the field. Due to the design of 

the developed unit, it is rather intended for use in indoor work. A series of tests 

was performed to generate a two-dimensional room map using the gmapping 

algorithm. On its basis, the robot correctly travelled between the entered 

trajectory points. In search of optimal cooling for the computer used in the robot, 

measurements were made with a thermal imaging camera. It was verified whether 

passive cooling would be sufficient and by how much such cooling is less 

efficient than active cooling.  

We are currently working on extending the capabilities of the robot with an 

RGB-D video module and developing software to perform a fusion of data from 

the module and the laser scanner to generate a 3D map of the surroundings.  

This development is an extremely challenging undertaking that requires the use 

of state-of-the-art algorithms.  
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Streszczenie. W artykule przedstawiono koncepcję autonomicznego robota mobilnego 

pracującego w systemie ROS i wykorzystującego zaawansowane algorytmy do generacji 

dwuwymiarowej mapy oraz autonomicznej nawigacji. Autorzy skupili się na 

przedstawieniu platformy sprzętowej urządzenia oraz na zaimplementowanym 

oprogramowaniu opartym na systemie LINUX oraz platformie Robot Operating System 

(ROS). W artykule zaprezentowano również algorytm realizujący generację 

dwuwymiarowej mapy otoczenia, autonomiczną jazdę robota oraz zdalne sterowanie 

urządzeniem. Wykonane pomiary temperatury komputera pozwoliły na podjęcie decyzji 

dotyczącej zastosowanego układu chłodzenia.  

Słowa kluczowe: robotyka, robot mobilny, generacja mapy, ROS, Linux 
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