

Autonomous Robot Project Based on the Robot Operating

System Platform

Szymon CHERUBIN, Wojciech KACZMAREK*, Natalia DANIEL

Military University of Technology,

Faculty of Mechatronics, Armament and Aerospace,

2 Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland
*Corresponding author’s e-mail address and ORCID:

wojciech.kaczmarek@wat.edu.pl; https://orcid.org/0000-0003-3805-9510

Received: August 15, 2022 / Revised: September 1, 2022 / Accepted: December 9, 2022/

Published: December 30, 2022.

DOI 10.5604/01.3001.0016.1462

Abstract. This article presents the concept of an autonomous mobile robot running on

the ROS system and using advanced algorithms for 2D map generation and autonomous

navigation. The authors focused on presenting the hardware platform, the Linux-based

software and the Robot Operating System (ROS) platform. This article also introduces an

algorithm that provides the generation of a 2D map of the surroundings, autonomous

robot driving and remote control of the device. Measurements of the temperature of the

computer helped in the decision on which cooling system to use.

Keywords: robotics, mobile robot, map generation, ROS, Linux

PROBLEMS OF MECHATRONICS
ARMAMENT, AVIATION, SAFETY ENGINEERING

 13, 4 (50), 2022, 85-108

PROBLEMY MECHATRONIKI
UZBROJENIE, LOTNICTWO, INŻYNIERIA BEZPIECZEŃSTWA

ISSN 2081-5891

E-ISSN 2720-5266

Sz. Cherubin, W. Kaczmarek, N. Daniel 86

1. INTRODUCTION

Dynamic technological development has been observed in the world

for a long time, especially in the field of robotics. It already has a significant

impact on people's everyday lives, especially in terms of replacing human work

with activities carried out by machines. This phenomenon is particularly visible

in industry [1-3], but it can also be found more often in the area of services.

Most of the robots used in the world are fully autonomous constructions that are

able to perform monotonous inspection works on their own and act as

autonomous platforms for fleet management and control of intralogistic processes

[4]. Nevertheless, such designs are also widely used in the military sphere. Using

them provides the opportunity to carry out reconnaissance, support and combat

operations in dangerous or inaccessible terrain. It is extremely important for

humans, as not involving human resources in tasks that are dangerous to human

life or health increases the chance of survival or at least minimising any damage

to the health. The use of highly advanced sensory devices in modern robots allows

the use of perceptual abilities that are much more accurate and reliable compared

to human organs – especially senses such as vision and hearing [5]. The resistance

of robots to an environment dangerous for humans is particularly visible in tasks

related with space exploration, where unmanned mobile robots can successfully

operate on other planets of our solar system: Sojourner, Spirit, Opportunity,

Curiosity and Perseverance [6]. For mobile robots, the Robot Operating System

(ROS) software platform is often used, as it is a free platform and can be installed

on the free LINUX operating system [7-11].

This article presents the developed autonomous robot that uses advanced

SLAM algorithms for its operation, which allows the robot to generate a 2D

map of its surroundings and locate itself on the generated map. The robot

developed here is a design that uses ROS software running on the Linux

kernel-based operating system – Ubuntu Mate.

2. AUTONOMOUS ROBOT PLATFORM

A robot comprises a set of electronic components and peripheral devices

transmitting information and control commands with others, allowing the robot

to perform its assigned tasks according to the implemented workflow algorithm.

In order to function properly, the vehicle required a properly selected hardware

and software structure. The main tasks performed by the developed robot were:

 generation of a digital, 2D map of the surroundings,

 location in space using proprioceptive odometry,

 autonomous driving,

 operating in a remote-control mode.

Autonomous Robot Project Based on the Robot Operating… 87

2.1. Hardware structure

The hardware structure of the robot consisted of appropriately selected

electronic and mechanical components (Fig. 2.1).

Fig. 2.1. Block diagram of the robot's hardware structure.

The heart of the robot was a single-board Raspberry Pi 4B computer (Table

2.1) with a Cortex-A72 64-bit processor acting as the robot's on-board computer

and the supporting Arduino MEGA (ATmega2560) microcontroller responsible

for motor control. The on-board computer was the unit responsible for processing

any data coming from the sensors and for wireless data transmission to the

operator's personal computer. The microcontroller, which was connected to the

central unit via a USB connector, was responsible for receiving signals from the

encoders and developing control commands transmitted directly to the motors via

the GPIO pins. The purpose of using the Arduino MEGA microcontroller (Table

2.2) was to relieve the on-board computer in order to handle four system

interrupts necessary for correct control (reading data from the encoders).

Table 2.1. Raspberry Pi 4B computer specifications [12]

Parameter Value

Processor Broadcom BCM2711, Cortex-A72 64-bit SoC, ARM8v-A,

4 x 1.5 GHz

RAM 4 GB LPDDR4-3200 SDRAM

Memory Flash: micro SD card slot

Supply voltage 5.1 V, 3 A via USB C

Wi-Fi interface 2.4 GHz and 5.0 GHz IEEE 802.11ac

Communication

interfaces
UART, SPI, I2C, GPIO, DSI, CSI, USB 2.0, USB 3.0

Sz. Cherubin, W. Kaczmarek, N. Daniel 88

Table 2.2. Arduino MEGA microcontroller specifications [13]

Parameter Value

Microcontroller ATmega2560

Clock frequency 16 MHz

Flash memory 256 kB

SRAM 8 kB

EEPROM 4 kB

Analogue I pins 16

Digital I/O pins 54 (15 PWM outputs)

Supply voltage 7 – 12 V

The main source of information obtained from the surroundings was

the RPLidar A3M1 laser scanner by Slamtec [14]. It was responsible for

generating the data used to create a digital map of the surroundings. It was

an allothetic source of information with high accuracy and high speed of work

due to the use of a laser beam in the infrared range as a data carrier. Table 2.3.

presents the basic operating parameters of the RPLidar A3M1.

Table 2.3. Basic operating parameters of the RPLidar A3M

Parameter Indoor operating mode Field operation mode

Range White objects: 25 m

Black objects: 10 m

White objects: 25 m

Black objects: 8 m

Scan frequency Nominal value: 15 Hz, changeable in range: 5-20 Hz

Sampling frequency 16 kHz 16 / 10 kHz

Angular resolution 0.225 ° 0.225 / 0.36 °

Communication

interface
TTL UART

Transmission speed 256 000 bps

The ROVER 5-2 platform was used as the chassis in the developed project.

It had a crawler track system to perform no holonomic motion. The platform was

equipped with two TECO TFK280SC DC motors with a gear ratio of 87:1. They

generated an output torque of 1 Nm and a rotational speed of 8804 rpm [15].

The sensors used to acquire data on the robot's position in space in the form of

the number and direction of rotation of the motors were incremental encoders

using the Hall effect with a resolution of 333.33 per revolution (Fig. 2.2).

Autonomous Robot Project Based on the Robot Operating… 89

Fig. 2.2. Incremental encoder used in the robot design

The DC motors driving the platform were controlled by a two-channel

L298N controller based on a double H-bridge. The controller achieved current

efficiency on each of the channels equal to 2 [A]. Additionally, the maximum

voltage supplying the motors was 35 [V]. This controller was protected against

overheating by an added heat sink (Fig. 2.3).

Fig. 2.3. Schematic diagram of the L298N DC motor controller [16]

Sz. Cherubin, W. Kaczmarek, N. Daniel 90

The completed model of an autonomous robot is shown in Figure 2.4.

Fig. 2.4. Completed model of the autonomous robot

2.2. Software

The presented solution used the Ubuntu MATE operating system, one

compatible with ROS software.

2.2.1. Ubuntu MATE

The Ubuntu MATE system (Figure 2.5) was a complete GNU/Linux

operating system distribution using MATE as the desktop environment.

Fig. 2.5. Screen of a computer with Ubuntu MATE installed

Autonomous Robot Project Based on the Robot Operating… 91

This system provided great support for ROS software and was a version of

the system that used much fewer computing resources of the CPU compared to

the classic version of Ubuntu. The system version 20.04 Focal Fossa was installed

on the robot's platform. It was the latest version of this operating system, with the

longest technical support at that moment. The TCP/IP network was used for

communication between the robot's central unit and the user's personal computer

[17]. The communication was provided using the ssh communication protocol.

2.2.2. Robot Operating System

As previously mentioned, the software used to implement control algorithms

and responsible for acquiring and processing of data from sensory systems was

the ROS platform. It was a powerful programming platform running on a free

software basis. Its main application in a robotic environment was system service

responsible for control of humanoid, industrial and mobile robots. It was created

in 2007 in California thanks to the cooperation between Stanford University and

a robotics company – Willow Garage. Since its creation, the platform has been

constantly developed by an international group of programmers dealing with

robotics [18].

The operation of the ROS platform was based on the communication of

processes, which were simultaneously working nodes responsible for various

functions of the robot (Fig. 2.6). They formed a network in which the processes

were interconnected. This ensured that each node had access to the network,

cooperation between them and the ability to monitor the type of data sent to the

network. ROS enabled the exchange of messages in the form of topics, services,

parameters and actions [19] and [27].

Fig. 2.6. Diagram of node cooperation in the ROS environment

Sz. Cherubin, W. Kaczmarek, N. Daniel 92

The ROS environment supported programs developed in high-level

languages: Python and C++. Catkin was responsible for building the structures.

This was an official compiler made up of CMake macros and custom scripts

developed in Python. Catkin was the successor to the basic ROS compiler –

rosbuild. Compared to its predecessor, it featured significantly more

functionality. As with CMake, catkin automatically managed the compilation

processes, so that the programme was not compiled independently, but files with

compilation rules for a specific environment were generated. For GNU/Linux,

makefiles were generated by using scripts derived from Python, the user of the

catkin compiler could automatically search for packages and develop multiple

large format projects simultaneously [20].

The ROS environment also had many graphical tools that allowed control of

the operation of individual vehicle components and software packages.

In addition, it was equipped with tools that allowed one to visualize vehicle

operation on the basis of data from sensory systems, as well as to simulate the

vehicle operation. The most commonly used tools were:

 RQT package – a platform included in the ROS software that enabled

the implementation of various GUI tools in the form of plug-ins.

The package was used to manage all tools in a single window.

The platform was the most commonly used software for the diagnostics

of robots [21]. In addition, the platform allowed visualization of the

structure of the nodes and the connections between them, which greatly

facilitated the understanding of ROS operation. What is more, the RQT

package enabled node analysis by mirroring the transformation tree

launched by the basic node of the rqt_tf_tree system and invoking

the node connection network – rqt_graph.

 Rviz (Fig. 2.7) – a package used for three-dimensional visualization of

messages in ROS, which was developed at a Korean university [22].

Fig. 2.7. Rviz graphic visualizer panel

Autonomous Robot Project Based on the Robot Operating… 93

It allows the visualization of data from sensors and depicts the robot's

environment. In addition, it permits visualization of data from the

perspective of a selected coordinate system based on data from the tf

library. It also enabled graphical representation of the robot's URDF

model and kinematic analysis of its motion. Additionally, the interface of

the graphical tool enabled the creation of a digital map of the environment

surrounding the robot based on sensor data.

 URDF (Unified Robot Description Format) – used to determine the

kinematics and dynamics of the robot and was also used to represent the

robot [23]. The format was used in the rviz visualizer and in the Gazebo

simulator. URDF files were created using HTML. Based on the data

contained in the unified format, it was possible to calculate the spatial

pose of the robot and detect potential programming errors. URDF files

with the appropriate plug-ins could be generated from CAD software.

An example description of a humanoid robot using URDF is shown in

Fig. 2.8.

Fig. 2.8. Description of the humanoid robot representation using the URDF format

 Gazebo – a free ROS program for conducting 3D simulations of robot

functioning, created in 2000 at the University of Southern California

as a part of the Player project. It is one of the most popular robotics

simulators that uses the OGRE (Object-Oriented Graphics Rendering

Engine) graphics engine. This is because of its high efficiency and fully

accurate mapping of reality and the laws of physics for which the ODE

(Open Dynamics Engine) is responsible [24].

3. ALGORITHMS

A robot requires a finite sequence of predefined and consecutive actions

in order to work correctly and complete its tasks.

A simplified block diagram of the robot's algorithm that generates a 2D map,

autonomous driving and remote control is shown in Fig. 3.1.

Sz. Cherubin, W. Kaczmarek, N. Daniel 94

Fig. 3.1. Simplified block diagram of the robot algorithm

Autonomous Robot Project Based on the Robot Operating… 95

3.1. Control algorithms

The robot, apart from autonomous driving, can be remotely controlled.

It was implemented through the ROS network and the ssh communication

protocol. More specifically, the ROS network used a master-slave relationship in

a duplex transmission. The central unit of the robot was ROS_MASTER_URI,

which was responsible for the mutual location of the running nodes and

the control of the transmitted data. The operator's computer unit was the host.

From there, it was possible to visualize and control the robot's operations.

The network of nodes responsible for remote control of the effectors is presented

in Fig. 3.2.

Fig. 3.2. Network of nodes responsible for remote control

The teleop_twist_keyboard node was responsible for handling the keys on

the user's personal computer and converting the registered keys into an

appropriate stream of commands in the form of cmd_vel messages. This message

was a PWM signal with a length selected according to the vehicle speed received

by the serial_node. This node was a representation of the rosserial packet,

a communication protocol responsible for converting ROS messages, topics, and

services for use in serial communication [25]. In this case, the node was

responsible for communication between the robot's CPU and the Arduino MEGA

connected with the USB connector. It then transmitted the control signals

separately for each motor to the diff_tf node. It consisted of a differential drive

package that transmitted the control signals to the motors. This node was also

responsible for reading data from the encoders and transmitting odometry

information in the form of tf transformation messages for the navigation stack.

Figure 3.3 shows a diagram of the robot with a differential drive. Its mathematical

development has been described in great detail by P. J. Alsin in [26].

The autonomous driving of the robot took place using the navigation_stack.

This was an advanced algorithm responsible for estimating the route of the

vehicle movement to a point set by the operator and transmitting appropriate

control signals to the vehicle's motors to reach this point.

Sz. Cherubin, W. Kaczmarek, N. Daniel 96

Fig. 3.3. Diagram of a robot with a differential drive [26]

The move_base package was the main node of the navigation stack that

combined a global and local planner and supported two cost maps: local and

global. These were the mandatory elements required to perform the navigation

tasks. The global planner was responsible for planning the trajectory path from

the starting point to the destination. It was based on Dijkstra's heuristic algorithm.

This was a "greedy algorithm" for finding the shortest path on the map from

the source vertex to the remaining vertices in the graph, characterized by

a non-negative edge weight [28]. The role of the local planner was performed by

the DWA algorithm – the dynamic windows method. It was proposed by

D. Fox, W. Burgard and S. Thrun in 1997 [29]. The algorithm was responsible

for generating control commands in the form of the linear and angular velocities

(v, ω) that were optimal for the local conditions of the vehicle, aimed at avoiding

obstacles on the path. The approach took into account a periodically short time

interval when calculating the next control command. This avoided the enormous

complexity of the traffic planning problem. The algorithm was implemented in

the 5 steps proposed by K. Zheng [30]:

1. Sample discretization in the robot control space (dx, dy, dΘ).

2. For each of the velocity samples a simulation was made based on the

current state of the robot, how its state would change if the sampled speed

was applied to the effectors for a short period of time.

3. Assessing each simulation trajectory using metrics such as target

proximity, global path proximity and speed. Rejection of trajectories

causing a collision.

4. Selection of the most accurate trajectory and sending it to the vehicle's

effectors.

5. Execute and repeat.

Autonomous Robot Project Based on the Robot Operating… 97

Figure 3.4 shows a block diagram of the navigation stack. It contained the

previously mentioned move_base node, which was responsible for generating the

map of the surroundings and retrieving the previously prepared map from the data

memory.

Fig. 3.4. Block diagram of the navigation stack.

Additionally, the diagram shows the relationship between the previously

mentioned nodes with the components responsible for publishing data about the

surroundings. The published data must be in the form of appropriate message

types, which are also shown in the diagram. In order to work properly, the

navigation stack required the use of the ROS environment. In addition to using

the appropriate environment, it was also necessary to correctly configure it and

deliver the required types of messages. A mandatory node in the navigation stack

was the amcl node. It was a probabilistic system of locating a moving robot in

two-dimensional space. The system was responsible for Monte Carlo adaptive

localisation, which used a particle filter to track the robot's position on a known

map. It was an algorithm presented by D. Fox in 1999 [31]. Equally important

was the information on the relationships between the sensor coordinate frames

and the odometry information published by the library, tf. The publication of the

odometry information was performed by the diff_tf node. This was described in

the discussion on remote control of the robot. Additionally, odometry information

must be published in the form of the nav_msgs/Odometry message.

To move in the environment without collisions, the navigation stack used

information from a laser scanner, which published information in the form of

a sensor_msgs/LaserScan message. The following control messages were used to

control the robot's motors: (cmd_vel.linear.x, cmd_vel.linear.y,

cmd_vel.angular.z).

Sz. Cherubin, W. Kaczmarek, N. Daniel 98

They were sent in the form of a geometry_msgs/Twist message and

converted into commands that properly controlled the operation of the motors.

Figure 3.5 shows the network of operating nodes responsible for the correct

implementation of autonomous navigation.

Fig. 3.5. Diagram of nodes responsible for autonomous navigation

Figure 3.6 shows the map of the room, with the global and local maps

superimposed on it. They were used for the implementation of autonomous

navigation tasks. In addition, the estimated path of the vehicle to reach the set

target position was marked on the map.

Fig. 3.6. Map showing the implementation of autonomous navigation by a robot

Autonomous Robot Project Based on the Robot Operating… 99

3.2. Map generating algorithm

The advanced SLAM algorithm was responsible for generating a two-

dimensional map of the robot's surroundings. The algorithm used in the project is

gmapping, which was an open access package developed by the team of

G. Grisetti, C. Stachniss and W. Burgard [32]. It has been the most widely used

algorithm for SLAM problems. It used an Extended Kalman Filter (EKF)

to locate the robot, which, in comparison to the Monte Carlo methods, was less

computationally expensive for each mean-dimensional state space. The

comparison of both algorithms was conducted by D. Yuen and A. MacDonald in

2002 [33]. Gmapping was a planar algorithm responsible for solving SLAM

problems based on proprioceptive odometry and measurements from a laser

scanner, while the hector_slam package used only data from a laser scanner.

The gmapping package was based on the presence a grid representation,

which represented the robot's environment map as binary fields of random

variables, each of which represented the presence of an obstacle. Presence grid

maps were algorithms used in the probability of generating a map assuming

a known robot position. According to the well-known Bayesian approach [4],

used to combine transitions between robot positions and sensor measurements,

the algorithm solved the SLAM problem using the Rao-Blackwellized particle

filter. Its key idea was a posteriori estimation p(x1:t,m|z1:t,u1:t-1) of the m map, and

the robot's trajectory x1:t = x1, …, xt. Estimation was based on observations

z1:t = z1, …, zt and odometry measurements u1:t-1 = u1, …, u1:t-1.

The Rao-Blackwellized particle filter for the SLAM problem used the

following factorization [32]:

𝑝(𝑥1:𝑡, 𝑚|𝑧1:𝑡, 𝑢1:𝑡−1) = 𝑝(𝑚|𝑥1:𝑡, 𝑧1:𝑡) ∙ 𝑝(𝑥1:𝑡|𝑧1:𝑡, 𝑢1:𝑡−1) (3.1)

At first, this factorization allowed an estimation of the robot's trajectory, and

then on its basis calculated a map of its surroundings. Due to the strong

dependence of the map on the trajectory, this approach provided high

computational efficiency. This technique is often referred to as Rao-

Blackwellization [32].

Matching of scans, observation model and scoring method of the motion

model was done using a particle-based scan matching technique – "vasco", which

was part of Carnegie Mellon Robot Navigation Toolkit (CARMEN) [35].

This technique performed a gradient search based on the reliability function of

the current observation, taking into account the current grid map. It aimed to find

the most likely pose by matching the current observations with the map produced

so far. The equation describing this technique has the following form [32]:

𝑥𝑡
(𝑖)

= 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑥|𝑚𝑡−1
(𝑖)

, 𝑧𝑡 , 𝑥𝑡
′(𝑖)

) (3.2)

where: 𝑥𝑡
′(𝑖)

 - this is the first supposition, zt - current scan, 𝑚𝑡−1
(𝑖)

 - reference map.

Sz. Cherubin, W. Kaczmarek, N. Daniel 100

Bayes' rule is used to solve equation (3.2) – the pose with the highest

observation probability was sought 𝑝(𝑧𝑡|𝑚, 𝑥). In order to calculate this

probability, the "beam endpoint mode” was used [36]. In this model, the

individual beams within the scan were considered independent. The beam

probability was calculated based on the distance between the beam end point and

the nearest obstacle from that point. In order to obtain quick calculations

a tangled, local grid map was used [32].

The ROS software for generating a digital map, apart from an advanced

mapping algorithm, also required an appropriate transformation of the coordinate

systems representing each of the robot members. This was carried out by the tf

library, which was responsible for the scene graph concept, reflected in the form

of a hierarchy tree. The tree root was a representation of the environment map,

and each of its vertices was a geometric transformation, translation, or rotation

between the systems of each member [37]. Figure 3.7 shows the transformation

tree of the robot’s coordinate systems generated by the rqt_tf_tree package.

The laser subtree reflected the coordinate system in a polar form represented

by a laser scanner, while the base_link was a representation of the coordinate

system of the robot platform. Odom was the frame responsible for locating the

robot based on the data provided by the diff_tf node, which was responsible for

acquiring data from encoders and transforming them into odometry information.

The root of the tree was the map frame.

Fig. 3.7. Transformation tree of robot coordinate systems

Autonomous Robot Project Based on the Robot Operating… 101

Figure 3.8 shows the generated digital, two-dimensional map of the room

generated using the gmapping package.

Fig. 3.8. Two-dimensional map of the room generated using the gmapping algorithm

4. VEHICLE PLATFORM TESTS

Due to the type of computer and its cooling method, the completed robot

was tested in terms of the processor operating temperature and the entire central

unit. Measurements were made by reading the processor temperature by

triggering a command in the system shell and measuring the temperature of the

on-board computer with a thermal imaging camera. They were performed at the

moment of starting the CPU and the software responsible for the nominal

operation of the vehicle, and then after 5, 10 and 15 minutes of operation.

Measurements were taken in the following configurations:

 unit without cooling,

 unit with passive cooling in the form of a housing,

 unit with passive and active cooling.

Figure 4.1 shows an exemplary photo of the operating vehicle central unit

with cooling taken with a thermal imaging camera.

Sz. Cherubin, W. Kaczmarek, N. Daniel 102

Fig. 4.1. Working central unit with passive cooling after 5 minutes of operation

The results of the temperatures obtained are shown as graphs. Figure 4.2

shows the results of temperature measurements of the CPU with a thermal

imaging camera, while Figure 4.3 shows a graph of the CPU temperature.

Fig. 4.2. Temperature graph of the CPU using different cooling methods

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TE
M

P
 [

C
]

TIME [MIN]

TEMPERATURE OF THE CENTRAL PROCESSING
UNIT

Active

Passive

Without

Autonomous Robot Project Based on the Robot Operating… 103

Fig. 4.3. CPU temperature graph using different cooling methods

The measurement of the temperature reached by the vehicle's CPU and its

processor during rated operation was aimed at selecting the most favourable

method of cooling the robot's CPU. Cooling is an extremely important aspect of

an autonomous robot design due to the protection of its components against

overheating and damage.

When the RPi 4B temperature is above 80oC the processor is throttled,

resulting in an unwanted reduction in the performance of the computing unit.

Considering the results of the tests, the lowest temperatures were achieved using

the active cooling method, which provided a 34% reduction in temperature

compared to the unit without cooling. However, due to the use of the vehicle in

various conditions and the additional energy consumption of the fans, the passive

cooling method, which reduced the temperature of the CPU by 17%, is the most

advantageous. For the temperature reached by the CPU, the difference between

the active and passive methods is about 8%.

5. CONCLUSIONS

The development of robotics has an increasing impact on people's daily

lives. Engineers are increasingly trying to replace people in labour-intensive,

monotonous and dangerous jobs by developing new types of robots.

This phenomenon is particularly visible in industry but increasing numbers of

robots can also be found in the services area or even in private life. Alongside the

emerging designs, where powerful computers are required, increasingly

sophisticated software is being developed, without which there would be no

autonomous machines.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TE
M

P
 [

C
]

TIME [min]

CPU TEMPERATURE

Active

Passive

Without

Sz. Cherubin, W. Kaczmarek, N. Daniel 104

An example here are the advanced algorithms used to solve SLAM

(Simultaneous Localization and Mapping) problems, which make robots more

autonomous and increasingly safe for humans.

The autonomous robot presented in the article is equipped with advanced

sensory devices (including the RPLidar A3M1 laser scanner by Slamtec), and the

algorithms used to control the robot can be used in other designs of mobile robots.

Thanks to the use of the LINUX OS and the Robot Operating System

programming platform, all operations performed by the robot were executed in

real time. The proposed design and software met the requirements, and the use of

a laser scanner allowed for the implementation of innovative and advanced

algorithms for autonomous navigation and generation of two-dimensional maps.

This allowed the robot to move independently in the field. Due to the design of

the developed unit, it is rather intended for use in indoor work. A series of tests

was performed to generate a two-dimensional room map using the gmapping

algorithm. On its basis, the robot correctly travelled between the entered

trajectory points. In search of optimal cooling for the computer used in the robot,

measurements were made with a thermal imaging camera. It was verified whether

passive cooling would be sufficient and by how much such cooling is less

efficient than active cooling.

We are currently working on extending the capabilities of the robot with an

RGB-D video module and developing software to perform a fusion of data from

the module and the laser scanner to generate a 3D map of the surroundings.

This development is an extremely challenging undertaking that requires the use

of state-of-the-art algorithms.

FUNDING

The study was co-financed by the Military University of Technology

(Warsaw, Poland) under Research project UGB 893/2021.

REFERENCES

[1] Borys, Szymon, Wojciech Kaczmarek, and Dariusz Laskowski. 2020.

“Selection and optimization of the parameters of the robotized packaging

process of one type of product”. Sensors 20 (18) : 5378-1-21.

[2] Kaczmarek, Wojciech, Bartłomiej Lotys, Szymon Borys, Dariusz

Laskowski, and Piotr Lubkowski. 2021. "Controlling an industrial robot

using a graphic tablet in offline and online mode”. Sensors 21 (7) : 2439-

1-20.

Autonomous Robot Project Based on the Robot Operating… 105

[3] Panasiuk, Jarosław, Wojciech Kaczmarek, Michał Siwek, and Szymon

Borys. 2022. “Test Bench Concept for Testing of Gripper Properties in

a Robotic Palletizing Process”. Problemy mechatroniki. Uzbrojenie,

lotnictwo, inżynieria bezpieczeństwa / Problems of Mechatronics.

Armament, Aviation, Safety Engineering . 13 (2) : 51-64.

[4] Płaczek, Ewa, Kornelia Osieczko. 2020. „Zastosowanie robotów AGV

w intralogistyce”. Zarządzanie Innowacyjne w Gospodarce i Biznesie

1 (30) : 165-176.

[5] Matthews, Kayla. 2018. "How Robot Precision Has Evolved, Enabling

More Uses”. Robotics Business Review .

(https://www.roboticsbusinessreview.com/manufacturing/robot-

precision-evolves/)

[6] Jayawardana, J.K. Rahul, and T. Sameera Bandaranayake. 2021. "A review

of unmanned planetary exploration on Mars”. International Research

Journal of Modernization in Engineering Technology and Science 3 (2) :

451-462.

[7] Besseghieur, Khadir Lakhdar, Radosław Trębiński, Wojciech Kaczmarek,

and Jarosław Panasiuk. 2020. “From Trajectory Tracking Control to

Leader–Follower Formation Control”. Cybernetics and Systems 5 (27) :

339-356.

[8] Prusaczyk, Piotr, Wojciech Kaczmarek, Jarosław Panasiuk, and Khadir

Besseghieur. 2019. “Integration of robotic arm and vision system with

processing software using TCP/IP protocol in industrial sorting

application”. AIP Conference Proceedings 2078 : 020032-1-8.

[9] Siwek, Michał, Leszek Baranowski, Jarosław Panasiuk, and Wojciech

Kaczmarek. 2019. “Modeling and simulation of movement of dispersed

group of mobile robots using Simscape multibody software”. AIP

Conference Proceedings 2078 : 020045-1-5.

[10] Besseghieur, Khadir Lakhdar, Radosław Trębiński, Wojciech Kaczmarek,

and Jarosław Panasiuk. 2018. “Trajectory tracking control for

a nonholonomic mobile robot under ROS”. Journal of Physics: Conf.

Series 1016 : 012008-1-5.

[11] Besseghieur, Khadir Lakhdar, Wojciech Kaczmarek, and Jarosław

Panasiuk. 2017. “Multi-robot Control via Smart Phone and Navigation in

Robot Operating System”. Problemy mechatroniki. Uzbrojenie, lotnictwo,

inżynieria bezpieczeństwa / Problems of Mechatronics. Armament,

Aviation, Safety Engineering 8 (4) : 37-46.

[12] Ghael, Hirak Dipak, L. Solanki, and Gaurav Sahu. 2021. "A Review Papier

on Raspberry Pi and its Applications”. International Journal of Advances

In Engineering and Management (IJAEM) 2 (12) : 225-227.

[13] Gil De La Iglesia, Didac. 2012. Tangible User Interfaces. Laboratory

Guide. Master in Social Media and Web Development, Linnaeus

University.

https://bazekon.uek.krakow.pl/zawartosc/171619084
https://bazekon.uek.krakow.pl/zawartosc/171619084
https://www.tandfonline.com/doi/abs/10.1080/01969722.2020.1770502
https://www.tandfonline.com/doi/abs/10.1080/01969722.2020.1770502
https://aip.scitation.org/author/Prusaczyk%2C+Piotr
https://aip.scitation.org/author/Kaczmarek%2C+Wojciech
https://aip.scitation.org/author/Panasiuk%2C+Jaros%C5%82aw
https://aip.scitation.org/author/Besseghieur%2C+Khadir
https://aip.scitation.org/author/Besseghieur%2C+Khadir
https://aip.scitation.org/doi/abs/10.1063/1.5092035
https://aip.scitation.org/doi/abs/10.1063/1.5092035
https://aip.scitation.org/doi/abs/10.1063/1.5092035
https://aip.scitation.org/journal/apc
https://aip.scitation.org/author/Siwek%2C+Micha%C5%82
https://aip.scitation.org/author/Baranowski%2C+Leszek
https://aip.scitation.org/author/Panasiuk%2C+Jaros%C5%82aw
https://aip.scitation.org/author/Kaczmarek%2C+Wojciech
https://aip.scitation.org/author/Kaczmarek%2C+Wojciech
https://aip.scitation.org/doi/abs/10.1063/1.5092048
https://aip.scitation.org/doi/abs/10.1063/1.5092048
https://aip.scitation.org/journal/apc
https://aip.scitation.org/journal/apc
https://promechjournal.pl/resources/html/indexerSearch?search=427905&type=author
https://promechjournal.pl/resources/html/indexerSearch?search=120853&type=author
https://promechjournal.pl/resources/html/indexerSearch?search=120855&type=author
https://promechjournal.pl/resources/html/indexerSearch?search=120855&type=author

Sz. Cherubin, W. Kaczmarek, N. Daniel 106

[14] Slamtec. 2019. RPLIDAR 360 Degree Laser Range Scanner Interface

Protocol and Application Notes. Shanghain Slamtec. Co.

[15] TECO ELECTRIC CO.: Motor Specification TFK280SC-21138-45.

http://cdn.sparkfun.com/

datasheets/Robotics/RP6%20motor%20TFK280SC-21138-45.pdf (access

on 1.02.2022).

[16] L298N Motor Driver Controller Board. Instructables. 2015.

https://www.makerfabs.com/l298n-motor-driver-board.html (access on

1.02.2022).

[17] Docter, Quentin, and Jon Buhagiar. 2019. Introduction to TCP / IP (from

https://www.researchgate.net/publication/332460567_Introduction_to_T

CPIP)

[18] Dudek, Wojciech. 2013. Wykorzystanie czujnika Kinect i systemu ROS do

sterowania ruchem robota mobilnego (praca dyplomowa). Warszawa:

Politechnika Warszawska.

[19] Quigley, Morgan, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,

Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. 2009. ROS: an

open-source Robot Operating System. In Proceedings of the ICRA

workshop on open source software 3 (3.2).

[20] Quigley, Morgan, Brian Gerkey, and Wiliam D. Smart. 2015.

Programming Robots with ROS. O’Reilly.

[21] Borkowski, Mateusz, Krystian Łygas. 2017. “Model robota szeregowego

typu SCARA w środowisku ROS”. Autobusy : technika, eksploatacja,

systemy transportowe 18 (6) : 551-554.

[22] Kam, Hyeong Ryeol, Sung Ho Lee, Taejung Park, and Chang Hun Ki.

2015. “RViz: a toolkit for real domain data visualization”.

Telecomunication Systems 60 (2) : 1-9.

[23] Kang, Yeon, Donghan Kim, and Kwangjin Kim. 2019. URDF Generator

for Manipulated Robot. In Proceedings of the Third IEEE International

Conference on Robotic Computing (IRC).

[24] Peake, Ian, Joseph La Delfa, Ronal Bejarno, and Jan Olaf Blech. 2021.

Simulation Components in Gazebo. In Proceedings of the 22nd IEEE

International Conference on Industrial Technology (ICIT) pp. 1169-1175.

[25] Kuzin, Sergei, and Gabor Sziebig. 2020. SROS: Educational, Low-cost

Autonomous Mobile Robot Design Based on ROS. In Proceedings of the

2020 IEEE/SICE International Symposium on System Integration (SII).

[26] Guerra, N. Patricia, Pablo Javier Alsina, Adelardo A.D. Medeiros, and

Antônio P. Araújo Jr. 2004. Linear Modelling and Identification of

a Mobile Robot With Differential Drive. In Proceedings of the First

International Conference on Informatics in Control, Automation and

Robotics. Setúbal, Portugal, August 25-28, 2004.

http://cdn.sparkfun.com/%20datasheets/Robotics/RP6%20motor%20TFK280SC-21138-45.pdf
http://cdn.sparkfun.com/%20datasheets/Robotics/RP6%20motor%20TFK280SC-21138-45.pdf
https://www.makerfabs.com/l298n-motor-driver-board.html
http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-journal-1509-5878-autobusy__technika_eksploatacja_systemy_transportowe
http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-journal-1509-5878-autobusy__technika_eksploatacja_systemy_transportowe
https://www.researchgate.net/profile/Adelardo_Medeiros?_sg%5B0%5D=J93BPxsc7Ilvrk4wicLLrYGEdpgnqDaNEfSpRhHAHgfgsgeUgYsHkHNcu-sriVzUb3kQEHE.U8HG3t_J2yOCK6qQESb_cusxT78KML5S1ZOauGoM2cHFIVir1IfvSiPWg0QuwQG5jjBDdj61r3qefG5nzyWIfw&_sg%5B1%5D=jeBGmCxcj4ckjhcAJluzUn_akQ7CO9xpgSAhV0qegZpSrDeICZpcpRwtX2ioJhlpLvH2AQk._mMUC69K4h0ZEz6k6QvSgBOhHZyyL5OH3dpaxzkHu9RakLfBN-hGt3zF8YTJv0xSqVgiPgg6sg54wBTmgX8UOg
https://www.researchgate.net/scientific-contributions/Antonio-P-Araujo-Jr-70739548?_sg%5B0%5D=J93BPxsc7Ilvrk4wicLLrYGEdpgnqDaNEfSpRhHAHgfgsgeUgYsHkHNcu-sriVzUb3kQEHE.U8HG3t_J2yOCK6qQESb_cusxT78KML5S1ZOauGoM2cHFIVir1IfvSiPWg0QuwQG5jjBDdj61r3qefG5nzyWIfw&_sg%5B1%5D=jeBGmCxcj4ckjhcAJluzUn_akQ7CO9xpgSAhV0qegZpSrDeICZpcpRwtX2ioJhlpLvH2AQk._mMUC69K4h0ZEz6k6QvSgBOhHZyyL5OH3dpaxzkHu9RakLfBN-hGt3zF8YTJv0xSqVgiPgg6sg54wBTmgX8UOg

Autonomous Robot Project Based on the Robot Operating… 107

[27] Michał Siwek, Jarosław Panasiuk, Leszek Baranowski, Wojciech

Kaczmarek, and Szymon Borys. 2022. “Trajectory Tracking Control of

a Mobile Robot with the ROS System”. Problemy mechatroniki.

Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa / Problems of

Mechatronics. Armament, Aviation, Safety Engineering 4 (50) : 67-84.

[28] Marin-Plaza, Pablo, Ahmed Hussein, David Martin, and Arturo de la

Escalera. 2018. “Global and Local Path Planning Study in ROS-Based

Research Platform for Autonomous Vehicles”. Journal of Advanced

Transportation 2018 : 6392697.

[29] Fox, Dieter, Wolfram Burgard, and Sebastian Thrun. 1997. “The Dynamic

Window Approach to Collision Avoidance”. IEEE Robotics & Automation

Magazine 4 (1) : 23-33.

[30] Zheng, Kaiyu. 2017. ROS Navigation Tuning Guide. In Robot Operating

System (ROS) - The Complete Reference (Volume 6). Springer

International Publishing.

[31] Fox, Dieter, Wolfram Burgard, Frank Dellaert, and Sebastian Thrun. 1999.

“Monte Carlo Localization: Efficient Position Estimation for Mobile

Robots”, In Proceedings of the Sixteenth National Conference on Artificial

Intelligence and Eleventh Conference on Innovative Applications of

Artificial Intelligence, July 18-22, 1999, Orlando, Florida, USA.

[32] Grisseti, Giorgio, Cyrill Stachniss, Wolfram Burgard. 2005. “Improved

Techniques for Grid Mapping with Rao-Blackwellized Particle Filters”,

IEEE Transactions on Robotics. 23 (1) : 34-46.

[33] Yuen, D.C.K., and B. A. MacDonald. 2002.A comparison between

Extended Kalman Filtering and Sequential Monte Carlo techniques for

simultaneous localisation and map-building. In Proceedings of the 2002

Australasian Conference on Robotics and Automation, Auckland,

Australia, pp. 111–116.

[34] Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. 2005. Probabilistic

Robotics (Intelligent Robotics and Autonomous Agent). The MIT Press.

[35] Montemerlo, M., N. Roy, S. Thrun, D. Hähnel, C. Stachniss, and J. Glover.

CARMEN—The Carnegie Mellon Robot Navigation Toolkit. (Available

online: http://carmen.sourceforge.net/).

[36] Thrun, Sebastian, Yufeng Liu, Daphne Koller, Andrew Y. Ng, Zoubin

Ghahramani, and Hugh Durrant-Whyte: “Simultaneous localization and

mapping with sparse extended information filters”. Int. Journal of Robotics

23 (7-8).

[37] Behl, Madhur. ROS Transformations and frames. University of Virginia.

(from: https://linklab-uva.github.io/autonomousracing/assets/files/L11-

compressed.pdf).

https://promechjournal.pl/resources/html/indexerSearch?search=120855&type=author
https://promechjournal.pl/resources/html/indexerSearch?search=120853&type=author
https://promechjournal.pl/resources/html/indexerSearch?search=120853&type=author
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=100
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=100
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8860
http://carmen.sourceforge.net/

Sz. Cherubin, W. Kaczmarek, N. Daniel 108

Projekt robota autonomicznego

bazującego na platformie Robot Operating System

Szymon CHERUBIN, Wojciech KACZMAREK, Natalia DANIEL

Wojskowa Akademia Techniczna,

ul. Sylwestra Kaliskiego 2, Warszawa,

Streszczenie. W artykule przedstawiono koncepcję autonomicznego robota mobilnego

pracującego w systemie ROS i wykorzystującego zaawansowane algorytmy do generacji

dwuwymiarowej mapy oraz autonomicznej nawigacji. Autorzy skupili się na

przedstawieniu platformy sprzętowej urządzenia oraz na zaimplementowanym

oprogramowaniu opartym na systemie LINUX oraz platformie Robot Operating System

(ROS). W artykule zaprezentowano również algorytm realizujący generację

dwuwymiarowej mapy otoczenia, autonomiczną jazdę robota oraz zdalne sterowanie

urządzeniem. Wykonane pomiary temperatury komputera pozwoliły na podjęcie decyzji

dotyczącej zastosowanego układu chłodzenia.

Słowa kluczowe: robotyka, robot mobilny, generacja mapy, ROS, Linux

This article is an open access article distributed under terms and conditions of the
Creative Commons Attribution-NonCommercial-NoDerivatives International 4.0

(CC BY-NC-ND 4.0) license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

http://creativecommons.org/licenses/by-nc-nd/3.0/

