Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present paper we determine sharp lower bounds of the real part of the ratios of harmonic univalent meromorphic functions to their sequences of partial sums [...].
Czasopismo
Rocznik
Tom
Strony
5--12
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
autor
- Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt
autor
- Institute of Mathematics, University of Rzeszow, ul.Rejtana16A, 35-310 Rzeszow, Poland
autor
- Department of Mathematics, Technical University of Rzeszow, ul.Wincentego Pola 2, 35-959 Rzeszow, Poland
Bibliografia
- [1] O. P. Ahuja and J. M. Jahangiri, Certain meromorphic harmonic functions, Bull. Malaysian Math. Sci. Soc., 25(2002), 1-10.
- [2] H. Bostanci and M. Ozturk, A new subclass of the meromorphic harmonic starlike functions, Appl. Math. Letters, 23(2010), 1027-1032.
- [3] H. Bostanci and M. Ozturk, A new subclass of the meromorphic harmonic γ-starlike functions, Appl. Math. Comput., 218 (2011), 683-688.
- [4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9(1984), 3-25.
- [5] J. M. Jahangiri, Harmonic meromorphic starlike functions, Bull. Korean Math. Soc., 37(2002), no.2, 291-301.
- [6] J. M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235(1999), 470-477.
- [7] J. M. Jahangiri, Coefficient bounds and univalent criteria for harmonic functions with negative coefficients, Ann. Univ. Marie-Curie Sklodowska Sect. A, 52(1998), 57-66.
- [8] J. M. Jahangiri and H. Silverman, Meromorphic univalent harmonic function with negative coefficients, Bull. Korean Math. Soc., 36(1999), no. 4, 763-770.
- [9] A. Janteng and S. A. Halim, A subclass of harmonic meromorphic functions, Int. J. Contemp. Math. Sci., 2(2007), no. 24, 1167-1174.
- [10] W. Hergartner and G. Schober, Univalent harmonic function, Trans. Amer. Math. Soc., 299(1987), 1-31.
- [11] S. Porwal, A convolution approach on partial sums of certain harmonic univalent functions, Internat. J. Math. Math. Sci., Vol. 2012, Art. ID 509349, 1-12.
- [12] S. Porwal, Partial sums of certain harmonic univalent function, Lobachevskii J. Mah., 32(2011), no.4, 366-375.
- [13] S. Porwal and K. K. Dixit, Partial sums of stalike harmonic univalent function, Kungpook Math. J., 50(2010), no. 3, 433-445.
- [14] H. Silverman, Harmonic univalent function with negative coefficients, J. Math. Anal. Appl., 220(1998), 283-289.
- [15] H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math., 28(1999), 275-284.
- [16] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209(1997), 221{227.
- [17] E. M. Silvia, On partial sums of convex functions of order, Houston J. Math., 11(1985), 397-404.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d35ba34d-bf29-4f10-8b05-3306baaef417