PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Investigation of Bio-Functional Properties of Titanium Substrates After Hybrid Oxidation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to enhance bioactive properties of titanium 99.2 used in implantology and various biomedical applications, numerous methods to form tight oxide coatings are being investigated. Some of these interesting techniques for generating TiO2 coatings include: electrochemical methods with anodizing, electric discharge treatment, plasma methods (PVD) and diffusive methods (i.e. oxidation in a fluidized bed). Each method aims to create a thin homogenous oxide coating characterized with thermal stability and repassivation ability in the presence of body fluid environment. However, new methods are still sought for increasing the biocompatibility of the substrate following a change in the intensity of depositing on the oxide coating compounds with high biocompatibility with body tissues, including hydroxyapatite, which constitutes the basis for subsequent osseointegration processes. The article presents investigation of HAp formation on titanium substrate surface after hybrid oxidation process. Hybrid surface treatments combine methods of fluidized bed atmospheric diffusive treatment FADT with the PVD surface treatment realized with different parameters (FADT - 640°C / 8h and PVD - magnetron sputtering with TiO2 target). In order to investigate the effects of hybrid oxidation and the formation of HAp molecules, SEM-EDS, SEM-EBSD, STEM-EDS, RS, nanoindentation and Kokubo bioactivity tests (c-SBF2) were carried out. The hybrid method of titanium oxidation, proposed by the Author, presents a new outlook on themodification and development of the properties of oxide coatings in the area of biomedical applications. Combining the ways of Ti Grade 2 oxidation in the hybrid method highly improves the formation of hydroxyapatite compounds and shows the potential of applying such a technique in implantology, where the intensive growth of bone tissues is crucial.
Twórcy
  • Czestochowa University of Technology, Logistics and International Management Institute, 19B Armii Krajowej Av., 42-200 Częstochowa, Poland
Bibliografia
  • [1] H. J. Rack, J. I. Qazi, Titanium alloys for biomedical applications, Mater. Sci. Eng. C Mater. Biol. Appl. 26, 1269-1277 (2006).
  • [2] T. Wierzchon, E. Czarnowska, D. Krupa, Surface engineering of biomaterials in the manufacture of titanium, Warsaw University of Technology Publishers (2004).
  • [3] B. Sun, S. Li, H. Imai, T. Mimoto, J. Umeda, K. Kondoh, Fabrication of high-strength Ti materials by in-process solid solution strengthening of oxygen via P/M methods, Mater. Sci. Eng. A 563, 95-100 (2013).
  • [4] A. Oyane, K. Onuma, A. Ito, H. M. Kim, T. Kokubo, T. Nakamura, Formation and growth of clusters in conventional and new kinds of simulated body fluids, J. Biomed. Mater. Res. 64A, 339-48 (2003).
  • [5] J. J. Jasinski, L. Kurpaska, M. Lubas et al., Effect of hybrid oxidation on the titanium oxide layer’s properties investigated by spectroscopic methods, J. Mol. Struct. 1126, 165-171 (2016)
  • [6] B. Zhou, X. Jiang, Z. Liu, R. Shen, A. V. Rogachev, Preparation and characterization of TiO2 thin film by thermal oxidation of sputtered Ti film, Mat. Sci. Semicon. Proc. 16, 2, 513-519 (2013).
  • [7] Y. X. Leng, J. Y. Chen, P. Yang, H. Sun, N. Huang: Structure and properties of passivating titanium oxide films fabricated by DC plasma oxidation, Surf. Coat. Tech. 166, 176-182 (2003).
  • [8] S. Izman et al., Effect of Thermal Oxidation Temperature on Rutile Structure Formation of Biomedical TiZrNb Alloy, Adv. Mater. Res. 393-395, 704-708 (2011).
  • [9] P. Chowdhury, H. C. Barshilia, N. Selvakumar, B. Deepthi, K. S. Rajam, A. R. Chaudhuri, S. B. Krupanidhi, The structural and electrical properties of TiO2 thin films prepared by thermal oxidation, Physica B 403, 3718-3723 (2008).
  • [10] D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, J. Breme, Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization, J. Biomed. Mater. Res. B 59, 18-28 (2002).
  • [11] F. Toptan, A. C. Alves, A.M.P. Pinto, P. Ponthiaux, Tribocorrosion behavior of bio-functionalized highly porous titanium, J. Mech. Behav. Biomed. Mater. 69, 144-152 (2017).
  • [12] M. Goldman, G. Juodzbalys, V. Vilkinis, Titanium surfaces with nanostructures influence on osteoblasts proliferation: a systematic review, J. Oral Maxillofac. Res. 5, (2014).
  • [13] J. I. Rosales-Leal, M. A. Rodríguez-Valverde, G. Mazzaglia et al. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion, Colloids Surf. A 365 (1-3), 222-229 (2010).
  • [14] N. Satoh, T. Nakashima, K. Yamamoto, Metastability of anatase: size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania, Sci Rep 3, 1959 (2013).
  • [15] J. He, W. Zhou, X. Zhou et al., The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation, J. Mater. Sci.: Mater. Med. 19 (11), 3465-3472 (2008).
  • [16] T. Kokubo et al. How useful is SBF in predicting in vivo bone bioactivity, Biomaterials 27, 2907-2915 (2006).
  • [17] D. Li, S. J. Ferguson, T. Beutler, D. L. Cochran, C. Siting, H. P. Hirt, D. J. Buser, Biomechanical comparison of the sandblasted and acidetched and the machined and acidetched titanium surface for dental implants, J. Biomed. Mater. Res. B 60, 325-332 (2002).
  • [18] M. Lubas, M. Sitarz, J. J. Jasinski, et al, Fabrication and characterization of oxygen - diffused titanium using spectroscopy method, Spectrochim. Acta A 133, 883-886 (2014).
  • [19] Z. Ding, X. Hu, P. L. Yue, G. Q. Lu, P. F. Greenfield, Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition, Catal. Today 68, 173-182 (2001).
  • [20] J. Heinrichs, T. Jarmar, U. Wiklund, H. Engqvist, Physical Vapour Deposition and Bioactivity of Crystalline Titanium Dioxide Thin Films, Trends Biomater. Artif. Organs 22 (2), 104-110 (2008)
  • [21] A. Gil, A. Kuc, Application of two-stage oxidation method for growth mechanism studies of rutile scale on titanium, Ceram. Mat.64, 188-191 (2012).
  • [22] R. D. Shannon, J. A. Pask, Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 48 (8), 391-398, (1965).
  • [23] S. S. Pradhan, S. Sahoo, S. K. Pradhan, Influence of annealing temperature on the structural, mechanical and wetting property of TiO2 films deposited by RF magnetron sputtering, Thin Solid Films 518, 6904-6908 (2010).
  • [24] J. J. Jasinski, M. Lubas, Ł. Kurpaska, W. Napadłek, M. Sitarz, Functionalization of Ti99.2 Substrates Surface by Hybrid Treatment Investigated with Spectroscopic Methods, J. Mol. Struct. 1164, 412-419 (2018).
  • [25] J. Zhang, M. J. Li, Z. C. Feng, J. Chen, C. Li, UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J. Phys. Chem. B 110 (2), 927-935 (2006).
  • [26] Y. Liang, B. Zhang, J. Zhao, Mechanical properties and structural identifications of cubic TiO2. Phys. Rev. B 77 (9), 94-126 (2008).
  • [27] A. Barfeie, J. Wilson, J. Rees, Implant surface characteristics and their effect on osseointegration, Br. Dent. J. 218, (2015).
  • [28] T. Kokubo, H. M. Kim, M. Kawashita, T. Nakamura, Bioactive metals: preparation and properties, J. Mater. Sci.: Mater. Med. 15, 99-107 (2004).
  • [29] R. Sabetrasekh, H. Tiainen, S. P. Lyngstadaas, J. Reseland, H. Haugen, A novel ultra-porous titanium dioxide ceramic with excellent biocompatibility, J. Biomater. Appl. 25, 559-580 (2011).
  • [30] J. Forsgren, F. Svahn, T. Jarmar, H. Engqvist, Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates, Acta Biomater. 3, 980-984 (2007)
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d35b105b-c2f3-475c-b908-1ea8deea5355
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.