Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study presents the possibility of using geostatistical methods for monitoring groundwater quality. Poland is one of the largest copper producers in the world. However, the extraction and production of copper requires constant care for the natural environment. Reservoir Żelazny Most which is situated in South – Western Poland was designed to store flotation tailings out of nearby copper mines. It is one of the biggest industrial dumps in the world. The reservoir stores huge amounts of tailings and industrial water. Water migrating from dump to groundwater could be a potential source of contamination with chlorides, sulphates, heavy metals, and other hazardous substances used in ore separation process in the copper mining industry, like detergent and phenols. Monitoring system around Żelazny Most dump, which was designed to track harmful substances concentrations in groundwater, contains measuring wells and piezometers. They are used to collect groundwater samples for chemical analyses. The idea of the study was to integrate information provided by chemical analyses and geoelectrical measurements by cokriging method, utilizing correlation between electrical resistance of the soil solution and total dissolved solids concentration in groundwater. This enabled to obtain spatial distribution of total dissolved solids concentrations in groundwater at the part of eastern foreground of Żelazny Most dump.
Wydawca
Rocznik
Tom
Strony
97--106
Opis fizyczny
Bibliogr. 20 poz., fig.
Twórcy
autor
- Warsaw University of Technology, Poland
autor
- Warsaw University of Technology, Poland
autor
- Warsaw University of Technology, Poland
Bibliografia
- 1. Antoniuk J., (2002). Geoelectrical monitoring of chemical pollution of underground, Geophysical research of geological environment (Publications of the Institute of Geophysics Polish Academy of Sciences), M-27, pp. 167-178.
- 2. Czaban S., Górski R., (1995). Water and waste products balance of “Żelazny Most” reservoir, in: VII Konferencja Sozologiczna, May 1995, Polkowice.
- 3. Duda R., Witczak S., (2003). Modeling of the transport of contaminants from the Żelazny Most flotation tailings dam, Gospodarka Odpadami Mineralnymi, 19(4), pp. 69-87.
- 4. Gringarten E., Clayton V., (2001). Deutsch Teacher’s Aide Variogram Interpretation and Modeling, Mathematical Geology, 33(4), pp. 507-534.
- 5. Fabijańczyk P., Sobiech, M. (2003). Znaczenie kokrigingu w inżynierii środowiska na przykładzie badań rozkładu zanieczyszczeń na fragmencie przedpola wschodniego zbiornika osadów poflotacyjnych „Żelazny Most”. MSc Thesis (in Polish), Warsaw University of Technology.
- 6. Han S., Schneider M., Evans G., (2003). Evaluating cokriging for improving soil nutrient sampling efficiency, Transactions of the ASAE, 46(3), pp. 845-849.
- 7. Isaaks E., H., R. Srivastava M. (1989). Applied Geostatistics, Oxford University, New York.
- 8. Jamiolkowski, M. (2014). Soil mechanics and the observational method: Challenges at the Zelazny Most copper tailings disposal facility, Géotechnique, 64(8), pp. 590-618.
- 9. Journel A.G., Huibregts C.J. (1978). Mining Geostatistics, Academic Press, London.
- 10. Lasocki S., Antoniuk J., Mościcki J. (2003). Environmental protection problems in the vicinity of the Żelazny Most flotation wastes depository in Poland, Journal of Environmental Science and Health, A38(8), pp. 1435-1443.
- 11. Lesch M.S., Strauss D.J., Rhoades J.D. (1995). Spatial prediction of soil salinity using electromagnetic induction techniques, Water Resources Research, 31(2), pp. 373-386.
- 12. Mościcki J., Antoniuk J. (2002). Application of geoelectric methods into studying of geological environment influenced by human activity, Geophysical research of geological environment (Publications of the Institute of Geophysics Polish Academy of Sciences), M-27, pp. 179-193.
- 13. Reedy R.C., Scanlon B.R. (2003). Soil water monitoring using electromagnetic induction, Journal of Geotechnical and Geoenvironmental Engineering, 129(11), pp. 1028-1039.
- 14. Vaughan P.J., Lesch M.S., Corwin D.L., Cone D.G. (1995). Water content effect on soil salinity prediction: a geostatistical study using cokriging, Soil Science Society of America Journal, 59(4), pp. 1146-1156.
- 15. Namysłowska-Wilczyńska B. (2006). Geostatystyka: teoria i zastosowania. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.
- 16. Skau, K., Andresen, L., Jostad, P., Fornes, P., Grimstad, G., Page, A. (2013). Stability and deformations of Zelazny Most dam – One of the World’s largest deponies for copper tailings. In Fjellsprengningsdagen, Bergmekanikkdagen, Geoteknikkdagen.
- 17. Zawadzki J., Kucharek M., Treichel W. (2004). The modeling of spatial distribution of chlorine ion concentration in groundwater from post-flotation reservoir „Żelazny Most”, Engineering & Protection of Environment, 7(3-4), pp. 381-392.
- 18. Zawadzki J. (2003). Introduction to integration of spatial data by cokriging method, Wiadomości Statystyczne GUS, 5, pp. 7-21.
- 19. Zawadzki J. (2011). Metody geostatystyczne dla kierunków przyrodniczych i technicznych. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
- 20. Zawadzki J., Fabijańczyk P. (2013). Geostatistical evaluation of lead and zinc concentration in soils of an old mining area with complex land management, International Journal of Environmental Science and Technology, 10 (4), pp. 729-742.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d352ea75-d53f-41be-9b87-dca61bbff488