Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper reviews studies on the modelling of the Mannesmann effect, which leads to the formation of an axial crack in parts formed by cross and skew rolling. This effect also occurs in the rotational compression (RC) test of a cylindrical specimen, which is used to determine the critical damage value. RC tests were carried out under laboratory conditions at the Lublin University of Technology on C45 steel specimens formed at 950°C. Based on the tests, the crack propagation was presented as a function of the progress of rotational compression, measured by the length of the deformation path. The RC tests were numerically modelled in Forge® using four ductile fracture criteria. The effectiveness of the Mannesmann effect modelling was evaluated by comparing the numerically predicted cracks with the experimentally determined ones. In addition, the influence of an occurring axial crack on the stress state in the forming specimen was analysed.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
23--32
Opis fizyczny
Bibliogr. 34 poz., fig.
Twórcy
autor
- Mechanical Faculty, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- 1. Meyer M., Stonis M., Behrens BA. Cross wedge rolling and bi-directional forging of preforms for crankshafts. Prod. Eng. Res. Devel. 2015, 9, 61–71. https://doi.org/10.1007/s11740-014-0581-8.
- 2. Li P., Wang B., Feng P. et al. Numerical and experimental study on the hot cross wedge rolling of Ti-6Al-4V vehicle lower arm preform. Int. J. Adv. Manuf. Technol. 2022, 118, 3283–3301. https://doi.org/10.1007/s00170-021-07979-3.
- 3. Pater Z., Tomczak J., Bulzak T., Walczuk-Gągała P. Numerical and experimental study on forming preforms in a CNC skew rolling mill. Archiv. Civ. Mech. Eng 2022, 22, e54. https://doi.org/10.1007/s43452-022-00373-0.
- 4. Shen J., Wang B., Zhou J. et al. Numerical and experimental research on cross wedge rolling hollow shafts with a variable inner diameter. Archiv. Civ. Mech. Eng 2019, 19, 1497–1510. https://doi.org/10.1016/j.acme.2019.08.003.
- 5. Pater Z., Tomczak J., Bulzak T. Numerical analysis of the skew rolling process for main shafts. Metalurgija 2015, 54(4), 627–630.
- 6. Yang C., Ma J., Hu Z. Analysis and design of cross wedge rolling hollow axle sleeve with mandrel. J. Mater. Process. Tech. 2017, 239, 346–358. https://doi.org/10.1016/j.jmatprotec.2016.09.002.
- 7. Huo Y., Bai Q., Wang B., Lin J., Zhou J. A new application of unified constitutive equations for cross wedge rolling of a high-speed railway axle steel. J. Mater. Process. Tech. 2015, 223, 274–283. https://doi.org/10.1016/j.jmatprotec.2015.04.011.
- 8. Pater Z., Tomczak J., Bulzak T. New forming possibilities in cross wedge rolling processes. Archiv. Civ. Mech. Eng 2018, 18(1), 149–161. https://doi.org/10.1016/j.acme.2017.06.005.
- 9. Pater Z., Tomczak J., Bulzak T., Cyganek Z., Andrietti S., Barbelet M. An innovative method for producing balls from scrap rail heads. Int. J. Adv. Manuf. Technol. 2018, 97, 893–901. https://doi.org/10.1007/s00170-018-2007-9.
- 10. Tomczak J., Pater Z., Bulzak T., Lis K., Kusiak T., Sumorek A., Buczaj M. Design and technological capabilities of a CNC skew rolling mill. Archiv. Civ. Mech. Eng 2021, 21, 72. https://doi.org/10.1007/s43452-021-00205-7.
- 11. Lin, L., Wang, B., Zhou, J. et al. Manufacturing large shafts by a novel flexible skew rolling process. Int. J. Adv. Manuf. Technol. 2022, 118, 2833–2851. https://doi.org/10.1007/s00170-021-08079-y.
- 12. Pater Z., Weroński W., Kazanecki J., Gontarz A. Study of the process stability of cross wedge rolling. J. Mater. Process. Tech. 1999, 92–93, 458–462. https://doi.org/10.1016/S0924-0136(99)00229-0.
- 13. Li Q., Lovell M. Cross wedge rolling failure mechanisms and industrial application. Int. J. Adv. Manuf. Technol. 2008, 37, 265–278. https://doi.org/10.1007/s00170-007-0979-y.
- 14. Pater Z., Tomczak J., Bulzak T. Problems of forming stepped axles and shafts in a 3-roller skew rolling mill. J. Mater. Res. Technol. 2020, 9(5), 10434–10446. https://doi.org/10.1016/j.jmrt.2020.07.062.
- 15. Yang C., Dong H., Hu Z. Micro-mechanism of central damage formation during cross wedge rolling. J. Mater. Process. Tech. 2028, 252, 322–332. https://doi.org/10.1016/j.jmatprotec.2017.09.041.
- 16. Pater Z., Tomczak J., Bulzak T., Bartnicki J., Tofil A. Prediction of Crack Formation for Cross Wedge Rolling of Harrow Tooth Preform. Materials 2019, 12, 2287. https://doi.org/10.3390/ma12142287.
- 17. Pater Z., Tomczak J., Bulzak T., Wójcik Ł., Walczuk P. Assessment of ductile fracture criteria with respect to their application in the modeling of cross wedge rolling. J. Mater. Process. Tech. 2020, 278, 116501. https://doi.org/10.1016/j.jmatprotec.2019.116501.
- 18. Bulzak T. Ductile fracture prediction in cross-wedge rolling of rail axles. Materials 2021, 14, 6638. https://doi.org/10.3390/ma14216638.
- 19. Pater Z., Tomczak J., Bulzak T. Establishment of a new hybrid fracture criterion for cross wedge rolling. Int. J. Mech. Sci. 2020, 167, 105274. https://doi.org/10.1016/j.ijmecsci.2019.105274.
- 20. Bulzak T., Pater Z., Tomczak J. Modified hybrid criterion for the cross wedge rolling process. J. Manuf. Process. 2023, 107, 496–505. https://doi.org/10.1016/j.jmapro.2023.10.075.
- 21. Zhou X., Shao Z., Zhang C., Sun F., Zhou W., Hua L., Jiang J., Wang L. The study of central cracking mechanism and criterion in cross wedge rolling. Int. J. Mach. Tool. Manu. 2020, 159, 103647. https://doi.org/10.1016/j.ijmachtools.2020.103647.
- 22. Yamane K., Shimoda K., Kuroda K., Kajikawa S., Kuboki T. A new ductile fracture criterion for skew rolling and its application to evaluate the effect of number of rolls. J. Mater. Process. Tech. 2021, 291, e116989. https://doi.org/10.1016/j.jmatprotec.2020.116989.
- 23. Ceretti E., Giardini C., Attanasio A., Brisotto F., Capoferri G. Rotary Tube Piercing Study by FEM Analysis: 3D Simulation and Experimental Results. Tube and Pipe Technology, 2004, March/April, 155–159.
- 24. Bulzak T., Wójcik Ł., Lis K., Kusiak T. Assessment of the possibility of quantitative identification of the Mannesmann effect using ductile fracture criteria. Int. J. Numer. Methods. Eng. 2024, e7430. https://doi.org/10.1002/nme.7430.
- 25. Pater Z., Tomczak J., Bulzak T. Rotary compression as a new calibrating test for prediction of a critical damage value. J. Mater. Res. Technol. 2020, 9(3), 5487–5498. https://doi.org/10.1016/j.jmrt.2020.03.074.
- 26. Pater Z., Walczuk P., Lis K., Wójcik Ł. Preliminary analysis of a rotary compression test. Adv. Sci. Technol. Res. J. 2018, 12(2), 77–82. https://doi.org/10.12913/22998624/86812.
- 27. Bulzak T., Majerski K., Tomczak J., Pater Z., Wójcik Ł. Warm skew rolling of bearing steel balls using multiple impression tools. CIRP Journal of Manufacturing Science and Technology 2022, 38, 288–298. https://doi.org/10.1016/j.cirpj.2022.05.007.
- 28. Tomczak J., Pater Z., Bulzak, T. A helical rolling process for producing ball studs. Archiv. Civ. Mech. Eng 2019, 19, 1316–1326. https://doi.org/10.1016/j.acme.2019.07.008
- 29. Derazkola H.A., Garcia E., Murillo-Marrodán A. Effects of skew rolling piercing process friction coefficient on tube twisting, strain rate and forming velocity. J. Mater. Res. Technol. 2023, 25, 7254–7272. https://doi.org/10.1016/j.jmrt.2023.07.167.
- 30. Kruse J., Jagodzinski A., Langner J., Investigation of the joining zone displacement of cross-wedge rolled serially arranged hybrid parts. Int. J. Mater. Form. 2020, 13, 577–589. https://doi.org/10.1007/s12289-019-01494-3.
- 31. Coors, T., Pape, F., Kruse, J., Stonis M., Behrens B.A. Simulation assisted process chain design for the manufacturing of bulk hybrid shafts with tailored properties. Int. J. Adv. Manuf. Technol. 2020, 108, 2409–2417. https://doi.org/10.1007/s00170-020-05532-2
- 32. Murillo-Marodan A., Garcia E., Cortes F. A study of friction model performance in a skew rolling process numerical simulation. Int. J. Simul. Model. 2018, 17(4), 569–582.
- 33. Li W., Liao F., Zhou T., Askes H. Ductile fracture of Q460 steel: Effects of stress triaxiality and Lode angle. J. Constr. Steel Res. 2016, 123, 1–17. https://doi.org/10.1016/j.jcsr.2016.04.018.
- 34. Bao Y., Wierzbicki T. On the cut-off value of negative triaxiality for fracture. Eng. Fract. Mech. 2005, 72, 1049–1069. https://doi.org/10.1016/j.engfracmech.2004.07.011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d34c7593-4a4e-4724-9a8d-72aeeea65f77