Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The growing demand for the reduction of anthropogenic CO2 emissions has stimulated the development of CO2 capture methods. One of the best capture methods comprises the calcium looping process, which incorporates calcium-based sorbents during the calcination and carbonation cycles. Czatkowice limestone may be considered to be a prospective chemical sorbent for the calcium looping process because of its formation characteristics. This paper addresses the thermogravimetric studies conducted under varying conditions of temperature and various concentrations of CO2 during the carbonation cycles. Moreover, a kinetic analysis of the carbonation stage was performed for the calcined sample at varying temperatures. The kinetic parameters for calcination and diffusion were determined. In addition, there was an increase in the concentration of CO2 with an increased carbonation conversion. The research results demonstrate that in further cycles of carbonation/calcination, the calcium sorbent reaches a higher rate of carbonation conversion with increased levels of CO2
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
53--58
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze, Poland
autor
- Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze, Poland
autor
- Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze, Poland
Bibliografia
- 1. Kotyczka-Morańska, M., Tomaszewicz, G. & Łabojko, G. (2012). Comparison of different methods for enhancing CO2 capture by CaO-based sorbents. Review. Physicochem. Probl. Miner. Process. 48, 77–90.
- 2. Manovic, V. & Anthony, E. (2007). SO2 retention by reactivated CaO-based sorbent from multiple CO2 Capture Cycles. Environ. Sci. Technol. 41, 4435–4440. DOI: 10.1021/es0629458.
- 3. Li,Y., Zhao, Ch., Chen, H., Liang, C., Duan, L. & Zhou, W. (2009) Modifi ed CaO-based sorbent looping cycle for CO2 mitigation. Fuel 88, 697–704. DOI: 10.1016/j.fuel.2008.09.018.
- 4. Manovic, V. & Anthony, E. (2010a). Sulfation Performance of CaO-Based Pellets Supported by Calcium Aluminate Cements Designed for High-Temperature CO2 Capture. Energy & Fuels 24, 1414–1420. DOI: 10.1021/ef900943h.
- 5. Adánez, J., de Diego, L. & Garcia-Labiano, F. (1999). Calcination of calcium acetate and calcium magnesium acetate: effect of the reacting atmosphere. Fuel, 78, 583–592. DOI: 10.1016/S0016-2361(98)00186-0.
- 6. Nimmo, W., Patsias, A., Hampartsoumian, E., Gibbs, B., Fairweather, M. & Williams, P. (2004). Calcium magnesium acetate and urea advanced reburning for NO control with simultaneous SO2 reduction. Fuel 83, 1143–1150. DOI: 10.1016/j.fuel.2003.11.011.
- 7. Patsias, A., Nimmo, W., Gibbs, B. & Williams, P. (2005). Calcium-based sorbents for simultaneous NOx/SOx reduction in a down-fi red furnace. Fuel 84, 1864–1873. DOI: 10.1016/j.fuel.2005.03.009.
- 8. Manovic, V. & Anthony, E. (2010b). CO2 Carrying behavior of calcium aluminate pellets under high-temperature/high-CO2 concentration calcination conditions. Ind. Eng. Chem. Res. 49, 6916–6922. DOI: 10.1021/ie901795e.
- 9. Manovic, V. & Anthony, E. (2008). Parametric Study on the CO2 Capture Capacity of CaO-Based Sorbents in Looping Cycles. Energy & Fuels 22, 1851–1857. DOI: 10.1021/ef800011z.
- 10. Bouquet, E., Leyssens, G., Schönnenbeck, C. & Gilot, P. (2009). The decrease of carbonation efficiency of CaO along calcination–carbonation cycles: Experiments and modelling. Chem. Eng. Sci. 64, 2136–2146. DOI: 10.1016/j.ces.2009.01.045.
- 11. Hughes, R., Lu, D., Anthony, E. & Wu, Y. (2004). Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor. Ind. Eng. Chem. Res. 43, 5529–5539. DOI: 10.1021/ie034260b.
- 12. Beruto, D., Barco, L. & Searcy, A. (1984). CO2-catalyzed surface area and porosity changes in high-surface-area CaO aggregates. J. Am. Ceram. Soc. 67, 512–516. DOI: 0.1111/j.1151-2916.1984.tb19644.x.
- 13. Butler, J., Lim, C. & Grace, J. (2014). Kinetics of CO2 absorption by CaO through pressure swing cycling. Fuel 127, 78–87. DOI: 10.1016/j.fuel.2013.09.058.
- 14. Oakeson, W. & Culter, I. (1979). Effect of CO2 pressure on the reaction with CaO. J. Am. Ceram. Soc. 62, 556–558. DOI: 10.1111/j.1151-2916.1979.tb12729.x.
- 15. Bhatia, S. & Perlmutter, D. (1983). Effect of the product layer on the kinetics on the CO2-lime Reaction. AIChE J. 29, 79–86. DOI: 10.1002/aic.690290111.
- 16. Lee, D. (2004). An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chem. Eng. J. 100, 71–77. DOI: 10.1016/j.cej.2003.12.003.
- 17. Li, Z. & Cai, N. (2007). Modeling of multiple cycles for sorption-enhanced steam methane reforming and sorbent regeneration in fixed bed reactor. Energy & Fuels 21, 2909–2918. DOI: 10.1021/ef070112c.
- 18. Szekely, J. & Evans, J. (1970). Structural model for gas–solid reactions with a moving boundary. Chem. Eng. Sci. 25, 1091–1107. DOI: 10.1016/0009-2509(71)86033-5.
- 19. Johnsen, K., Grace, J., Elnashaie, S., Kolbeinsen, L. & Eriksen, D. (2006). Modelling of sorption-enhanced steam reforming in a dual fluidized bubbling bed reactor. Ind. Eng. Chem. Res. 45, 4133–4144. DOI: 10.1021/ie0511736.
- 20. Bhatia, S. & Perlmutter, D. (1980). A random pore model for fluid–solid reactions: I. Isothermal, kinetic control. AIChE J. 26, 379–386. DOI: 10.1002/aic.690260308.
- 21. Bhatia, S. & Perlmutter, D. (1981). A random pore model for fluid–solid reactions: II. Diffusion and transport effects. AIChE J. 27, 247–254. DOI: 10.1002/aic.690270211.
- 22. Grasa, G., Murillo, R., Alonso, M. & Abanades, J. (2009). Application of the random pore model to the carbonation cyclic reaction. AIChE J. 55, 1246–1255. DOI: 0.1002/aic.11746.
- 23. Liu, W., Dennis, J. Sultan, D. Redfern, S. & Scott, S. (2012). An investigation of the kinetics of CO2 uptake by a synthetic calcium based sorbent. Chem. Eng. Sci. 69, 644–658. DOI: 10.1016/j.ces.2011.11.036.
- 24. Yu, Y., Liu, W., An, H., Yang, F., Wang, G., Feng, B., Zhang, Z. & Rudolph, V. (2012). Modeling of the carbonation behavior of a calcium based sorbent for CO2 capture. Int. J. Greenhouse Gas Cont. 10; 510–519. DOI: 10.1016/j.ijggc.2012.07.016.
- 25. Chen, H., Zhao, Ch., Li,Y. & Chen, X. (2010). CO2 Capture Performance of Calcium-Based Sorbents in a Pressurized Carbonation/Calcination Loop. Energy Fuels 24, 5751–5756. DOI: 10.1021/ef100565d.
- 26. Baker, E.H. (1962). The calcium oxide-carbon dioxide system in the pressure range 1–300 atmospheres. J. Chem. Soc. (464–470). DOI: 10.1039/JR9620000464.
- 27. Szekely, J., Evans, J.W. & Sohn, H.Y. Gas-solid reactions. Academic Press, New York (1976).
- 28. Levenspiel, O. (1972) Chemical Reaction Engineering. Third ed. Wiley, New York.
- 29. Yagi, S. & Kunii, D. (1955) Studies on combustion of carbon particles in flames and fluidized beds, Proceedings of 5th (int.) Symbosium on Combustion, Reinhold, New York, 231.
- 30. Zhou, Z., Xu, P., Xie, M., Cheng, Z. & Yuan, W. (2013). Modeling of the carbonation kinetics of a synthetic CaObased sorbent. Chem. Eng. Sci. 95, 283–290. DOI: 10.1016/j.ces.2013.03.047.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d34b2fb5-5d5c-4738-8676-b5f5112903d8