PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of Compost and Chemical Fertilizer on Multi-Metal Contaminated Mine Tailings Phytostabilization by Atriplex nummularia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy metals in mine tailings induce severe environmental contamination of terrestrial ecosystems. They are hazardous to human health and must be cleaned up. However, ex-situ procedures are costly and soil-destroying. Phytoremediation approaches might be a cost-effective and environmentally friendly option. Phytostabilization of mine tailings, which employs plants, is a commonly used technique for preventing the spread of contaminants and particles from the site. Nutrient-deficient mine tailings must be amended to increase plant growth and phytoremediation performance. This study aims to investigate the tolerance of Atriplex nummularia to high heavy metal levels (Pb, Zn, and Cu) and the effects of compost and chemical fertilizer on biomass generation and heavy metal uptake. Halophyte species have been commonly employed for the phytoremediation of soil polluted with heavy metals. A pot experiment was undertaken with four treatments: T1 (agricultural soil), T2 (mine tailings), T3 (mine tailings mixed with compost), and T4 (mine tailings with chemical fertilizer). Results showed that both amendments demonstrated a significant beneficial effect on growth and biomass production. For all treatments, metals mostly accumulated in the roots, with only a small amount transferred to the shoots. Compost application resulted in a higher Pb concentration in roots than chemical fertilizer. The results of this study suggest that Atriplex nummularia can be used in phytostabilization for these types of mine tailings. However, long-term field data is needed to improve understanding of the Atriplex nummularia tolerance to high concentrations of heavy metals, as well as their uptake and translocation to aerial components.
Twórcy
  • Georesources and Environment Laboratory, Department of Natural Resources and Environment, Hassan II Agronomy and Veterinary Institute, Rabat, Morocco
  • Laboratory of Geosciences, Department of Geology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
  • Georesources and Environment Laboratory, Department of Natural Resources and Environment, Hassan II Agronomy and Veterinary Institute, Rabat, Morocco
  • Research Unit on Environment and Conservation of Natural Resources, National Institute for Agricultural Research, Rabat, Morocco
  • International Center for Agricultural Research in the Dry Areas, North-Africa Platform, BP: 6443, Rabat Institutes, Av. Al Irfan, 10100, Morocco
  • Research Unit on Environment and Conservation of Natural Resources, National Institute for Agricultural Research, Rabat, Morocco
  • International Center for Agricultural Research in the Dry Areas, North-Africa Platform, BP: 6443, Rabat Institutes, Av. Al Irfan, 10100, Morocco
  • Laboratory of Geosciences, Department of Geology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
Bibliografia
  • 1. Zayed, A., Gowthaman, S., Terry, N. 1998. Phytoaccumulation of trace elements by wetland plants : I. Duckweed. Journal of environmental quality, 27(3), 715–721. Available at: http://www.refdoc.fr/Detailnotice?idarticle=14140782
  • 2. Acosta, J.A. et al. 2018. Phytoremediation of mine tailings with Atriplex halimus and organic/inorganic amendments: A five-year field case study. Chemosphere, 204, 71–78. DOI: 10.1016/j.chemosphere.2018.04.027
  • 3. Agomoh, I., Hao, X., Zvomuya, F. 2018. Phytoextraction of nitrogen and phosphorus by crops grown in a heavily manured Dark Brown Chernozem under contrasting soil moisture conditions. International Journal of Phytoremediation, 20(1), 27–34. DOI:10.1080/15226514.2017.1319333
  • 4. Amari, T., Ghnaya, T., Abdelly, C. 2017. Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. South African Journal of Botany, 111, 99–110. DOI:10.1016/j.sajb.2017.03.011
  • 5. Anning, C. et al. 2019. Determination and detoxification of cyanide in gold mine tailings: A review. Waste Management and Research, 37(11), 1117–1126. DOI: 10.1177/0734242X19876691
  • 6. Biernacki, M., Lovett-Doust, J. 2002. Developmental shifts in watermelon growth and reproduction caused by the squash bug, Anasa tristis’. New Phytologist, 155(2), 265–273. DOI: 10.1046/j.1469-8137.2002.00462.x
  • 7. Bilal, R. et al. 1990. Nitrogenase activity and nitrogen-fixing bacteria associated with the roots of Atriplex spp. growing in saline sodic soils of Pakistan. Biology and Fertility of Soils, 9(4), 315–320. DOI: 10.1007/BF00634108
  • 8. Broadley, M.R. et al. 2007. Zinc in plants, 677–702.
  • 9. Brunner, I. et al. 2008. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environmental Pollution, 152(3), 559–568. DOI: 10.1016/j.envpol.2007.07.006
  • 10.Burgos, P. et al. 2006. Spatial variability of the chemical characteristics of a trace-element-contaminated soil before and after remediation’, Geoderma, 130(1–2), 157–175. DOI: 10.1016/j.geoderma.2005.01.016
  • 11. Cheng, S. 2003. Effects of heavy metals on plants and resistance mechanisms. Environmental Science and Pollution Research, 10(4), 256–264. DOI: 10.1065/espr2002.11.141.2
  • 12. Conesa, H.M., Faz, Á., Arnaldos, R. 2006. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena – La Unión mining district (SE Spain), 366, 1–11. DOI: 10.1016/j.scitotenv.2005.12.008
  • 13. Dudka, S., Adriano, D.C. 1997. Environmental Impacts of Metal Ore Mining and Processing: A Review. Journal of Environmental Quality, 26(3), 590–602. DOI: 10.2134/jeq1997.00472425002600030003x
  • 14. Dybowska, A. et al. 2006. Remediation strategies for historical mining and smelting sites. Science Progress, 89(2), 71–138. DOI: 10.3184/003685006783238344
  • 15. Eid, M.A., Eisa, S.S. 2010. The use of some halophytic plants to reduce Zn, Cu and Ni in soil. Australian Journal of Basic and Applied Sciences, 4(7), 1590–1596.
  • 16. Eissa, M.A. 2014. Performance of river saltbush (Atriplex amnicola) grown on contaminated soils as affected by organic fertilization. World Applied Sciences Journal, 30(12), 1877–1881. DOI: 10.5829/idosi.wasj.2014.30.12.19
  • 17. Elhimer. 2012. Journal of Research in Agriculture, (1), 49–54.
  • 18. Elmayel, I. et al. 2020. Biogeochemical assessment of the impact of Zn mining activity in the area of the Jebal Trozza mine, Central Tunisia. Environmental Geochemistry and Health, 42(11), 3529–3542. DOI: 10.1007/s10653-020-00595-2
  • 19. Ghori, Z. et al. 2015. Phytoextraction: The Use of Plants to Remove Heavy Metals from Soil, Plant Metal Interaction: Emerging Remediation Techniques. Elsevier Inc. DOI: 10.1016/B978-0-12-803158-2.00015-1
  • 20. Gil-loaiza, J. et al. 2017. Direct Planting : Translating Greenhouse Results to the Field, 451–461. DOI: 10.1016/j.scitotenv.2016.04.168.Phytostabilization
  • 21. Gonzalez, R.F., Cooperband, L.R. 2002. Compost effects on soil physical properties and field nursery production. Compost Science and Utilization, 10(3), 226–237. DOI: 10.1080/1065657X.2002.10702084
  • 22. Greger, M. 2004. Metal Availability, Uptake, Transport and Accumulation in Plants, 1.1.
  • 23. Iavazzo, P. et al. 2012. Mineralogy and chemical forms of lead and zinc in abandoned mine wastes and soils : An example from Morocco. Journal of Geochemical Exploration, 113, 56–67. DOI: 10.1016/j.gexplo.2011.06.001
  • 24.Ji, H. et al. 2018. Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain. Ecotoxicology and Environmental Safety, 165(30), 182–193. DOI: 10.1016/j.ecoenv.2018.09.011
  • 25. Kachout, S.S. et al. 2012. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. Journal of the Science of Food and Agriculture, 92(2), 336–342. DOI: 10.1002/jsfa.4581
  • 26. Lee, S. et al. 2014. In fl uence of amendments and aided phytostabilization on metal availability and mobility in Pb / Zn mine tailings. Journal of Environmental Management, 139, 15–21. DOI: 10.1016/j.jenvman.2014.02.019
  • 27. Li, M.S., Luo, Y.P., Su, Z.Y. 2007. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China, 147, 168–175. DOI: 10.1016/j.envpol.2006.08.006
  • 28. Li, X., Wang, X., et al. 2019. Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment. Ecotoxicology and Environmental Safety, 168(May 2018), 1–8. DOI: 10.1016/j.ecoenv.2018.10.012
  • 29. Li, X., Zhang, X., et al. 2019. Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments’, Ecotoxicology and Environmental Safety, 180(May), 517–525. DOI: 10.1016/j.ecoenv.2019.05.033
  • 30. Lotmani, B. et al. 2011. Selection of Algerian Populations of the Mediterranean Saltbush, Atriplexhalimus, Tolerant to High Concentrations of Lead, Zinc, and Copper for Phytostabilization of Heavy Metal-Contaminated Soils. The European Journal of Plant Science and Biotechnology, 5(2), 20–26.
  • 31. Lutts, S. et al. 2004. Heavy Metal Accumulation by the Halophyte Species Mediterranean Saltbush. Journal of Environment Quality, 33(4), 1271. DOI: 10.2134/jeq2004.1271
  • 32. Manousaki, E. et al. 2008. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils, 106, 326–332. DOI: 10.1016/j.envres.2007.04.004
  • 33. Manousaki, E., Kalogerakis, N. 2011. Halophytesan emerging trend in phytoremediation. International Journal of Phytoremediation, 13(10), 959–969. DOI: 10.1080/15226514.2010.532241
  • 34. Mendez, M.O., Glenn, E.P., Maier, R.M. 2007. Phytostabilization Potential of Quailbush for Mine Tailings. Journal of Environmental Quality, 36(1), 245–253. DOI: 10.2134/jeq2006.0197
  • 35. Mendez, M.O., Maier, R.M. 2008. Phytostabilization of mine tailings in arid and semiarid environments - An emerging remediation technology. Environmental Health Perspectives, 116(3), 278–283. DOI: 10.1289/ehp.10608
  • 36. Milić, D. et al. 2012. Heavy metal content in halophytic plants from inland and maritime saline areas. Central European Journal of Biology, 7(2), 307–317. DOI: 10.2478/s11535-012-0015-6
  • 37. Nedjimi, B., Daoud, Y. 2009. Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake’, Flora: Morphology, Distribution, Functional Ecology of Plants, 204(4), 316–324. DOI: 10.1016/j.flora.2008.03.004
  • 38. Pardo, T., Bernal, M.P., Clemente, R. 2017. Phytostabilisation of severely contaminated mine tailings using halophytes and field addition of organic and inorganic amendments. Chemosphere, 178, 556–564. DOI: 10.1016/j.chemosphere.2017.03.079
  • 39. Parraga-Aguado, I. et al. 2014. Assessment of the employment of halophyte plant species for the phytomanagement of mine tailings in semiarid areas. Ecological Engineering, 71, 598–604. DOI: 10.1016/j.ecoleng.2014.07.061
  • 40. Peco, J.D. et al. 2021. Abandoned mine lands reclamation by plant remediation technologies. Sustainability (Switzerland), 13(12). DOI: 10.3390/su13126555
  • 41. Pérez, R. et al. 2021. Interactive effect of compost application and inoculation with the fungus Claroideoglomus claroideum in Oenothera picensis plants growing in mine tailings. Ecotoxicology and Environmental Safety, 208. DOI: 10.1016/j.ecoenv.2020.111495
  • 42. Pietrini, F. et al. 2003. Interaction of Cadmium with Glutathione and Photosynthesis in Developing Leaves and Chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiology, 133(2), 829–837. DOI: 10.1104/pp.103.026518
  • 43. Sai Kachout, S. et al. 2010. Effects of heavy metals on antioxidant activities of: Atriplex hortensis and A. Rosea. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(3), 444–457.
  • 44. Saidi. 2004. Essais de phytoremediation par vetiver grass.
  • 45. Samsuri, A.W. et al. 2019. The effects of rice husk ashes and inorganic fertilizers application rates on the phytoremediation of gold mine tailings by vetiver grass. Applied Geochemistry, 108(August 2018), 104366. DOI: 10.1016/j.apgeochem.2019.104366
  • 46. Seo, K.W. et al. 2008. Seedling growth and heavy metal accumulation of candidate woody species for revegetating Korean mine spoils’, Restoration Ecology, 16(4), 702–712. DOI: 10.1111/j.1526-100X.2008.00485.x
  • 47. Seregin, I.V., Kozhevnikova, A.D. 2006. Physiological Role of Nickel and Its Toxic Effects on Higher Plants, 53(2), 257–277. DOI: 10.1134/S1021443706020178
  • 48. Shi, L. et al. 2018. Hydrogen ions and organic acids secreted by ectomycorrhizal fungi, Pisolithus sp1, are involved in the efficient removal of hexavalent chromium from waste water. Ecotoxicology and Environmental Safety, 161(May), 430–436. DOI: 10.1016/j.ecoenv.2018.06.004
  • 49. Shi, X. et al. 2011. Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings. Journal of Environmental Sciences, 23(2), 266–274. DOI: 10.1016/S1001-0742(10)60402-0
  • 50. Soman, S. et al. 2020. Biocatalyst: Phytase production in solid state fermentation by ovat strategy. Biointerface Research in Applied Chemistry, 10(5), 6119–6127. DOI: 10.33263/BRIAC105.61196127
  • 51. Subpiramaniyam, S. 2021. Portulaca oleracea L. for phytoremediation and biomonitoring in metal-contaminated environments. Chemosphere, 280(April), 130784. DOI: 10.1016/j.chemosphere.2021.130784
  • 52. Sun, Y. et al. 2008. Cadmium tolerance and accumulation characteristics of Bidens pilosa L . as a potential Cd-hyperaccumulator Cadmium tolerance and accumulation characteristics of Bidens pilosa L . as a potential Cd-hyperaccumulator’, (September 2019). DOI: 10.1016/j.jhazmat.2008.04.030.
  • 53. Tariq, F.S. et al. 2016. Phytoremediation of Gold Mine Tailings Amended with Iron-Coated and Uncoated Rice Husk Ash by Vetiver Grass (Vetiveria zizanioides (Linn.) Nash). Applied and Environmental Soil Science. DOI: 10.1155/2016/4151898
  • 54. Usman, K. et al. 2020. Comparative Assessment of Toxic Metals Bioaccumulation and the Mechanisms of Chromium (Cr) Tolerance and Uptake in Calotropis procera’, Frontiers in Plant Science, 11(June), 1–11. DOI: 10.3389/fpls.2020.00883
  • 55. Wang, J., Zhang, C.B., Jin, Z.X. 2009. The distribution and phytoavailability of heavy metal fractions in rhizosphere soils of Paulowniu fortunei (seem) Hems near a Pb/Zn smelter in Guangdong, PR China. Geoderma, 148(3–4), 299–306. DOI: 10.1016/j.geoderma.2008.10.015
  • 56. Wei, Z. et al. 2021a. A review on phytoremediation of contaminants in air, water and soil. Journal of Hazardous Materials, 403, 123658. DOI: 10.1016/J.JHAZMAT.2020.123658
  • 57. Wei, Z. et al. 2021b. A review on phytoremediation of contaminants in air, water and soil. Journal of Hazardous Materials, 403(July 2020), 123658. DOI: 10.1016/j.jhazmat.2020.123658
  • 58. Xiao, R. et al. 2018. Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162(March), 178–183. DOI: 10.1016/j.ecoenv.2018.06.095
  • 59. Yan, A. et al. 2020. Phytoremediation: A Promising Approach for Revegetation of Heavy MetalPolluted Land. Frontiers in Plant Science, 11. DOI: 10.3389/FPLS.2020.00359
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d348f8e3-5d84-42f3-827c-ea52a72b756d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.