PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Water Quality Index and Health Risks in a Peruvian High Andean River

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water quality in rivers is affected as it passes through urban areas; this situation can be improved with good management of water resources. High Andean rivers require further studies to indicate their quality status. In addition, it is important to estimate the health risks associated with exposure to contaminants in the river water. Therefore, it is proposed to assess the water quality index (WQI) using the National Sanitation Foundation (NSF) model and the health risks in the urban section of the Ichu River in Peru. Six monitoring points were selected in the section of the Ichu River that includes the urbanized part of the city of Huancavelica. The sample was taken during the months of February to April 2021. Critical parameters were analyzed by multivariate statistical analysis as principal components and cluster test. In addition, Pearson’s correlation test was performed, and the water quality status was evaluated using the WQI-NSF model. The Ichu River was of “bad” quality, unfit for human consumption, and confirming the impact of the population on water quality. The WQI-NSF model could be useful for high Andean watercourses suffering from anthropogenic deterioration of quality, with illegal effluent discharges and poor sanitation. There is a high health risk due to fecal coliform contamination from sewage discharges into the river. In addition, the total hazard index indicated that contaminants are causing negative health effects in adult males at a low risk level (risk 2), adult females at a moderate risk level (risk 3), and children at a negligible risk level (risk 1). With the help of this study, an appropriate management plan can be put in place to restore the ecological integrity of the Ichu River.
Twórcy
  • Faculty of Engineering Sciences, Universidad Nacional de Huancavelica, Avenida Agricultura 319-321, Paturpampa 09001, Huancavelica, Peru
  • College of Agricultural Engineering, Water Resources Department,Universidad Nacional Agraria La Molina, 012 La Molina, Lima, Peru
  • Faculty of Engineering Sciences, Universidad Nacional de Huancavelica, Avenida Agricultura 319-321, Paturpampa 09001, Huancavelica, Peru
  • Faculty of Engineering Sciences, Universidad Nacional de Huancavelica, Avenida Agricultura 319-321, Paturpampa 09001, Huancavelica, Peru
  • Faculty of Engineering Sciences, Universidad Nacional de Huancavelica, Avenida Agricultura 319-321, Paturpampa 09001, Huancavelica, Peru
  • Faculty of Engineering Sciences, Universidad Nacional de Huancavelica, Avenida Agricultura 319-321, Paturpampa 09001, Huancavelica, Peru
  • Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jirón Huanta 1182, Lima 15001, Peru
  • Universidad Nacional Daniel Alcides Carrión, Av. Los Próceres 703, Cerro De Pasco 19001, Peru
  • Universidad Nacional Autónoma de Chota, José Osores 418, Chota 06121, Cajamarca, Peru
  • Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jirón Huanta 1182, Lima 15001, Peru
Bibliografia
  • 1. Abdelhafiz, M.A., Elnazer, A.A., Seleem, E.-M.M., Mostafa, A., Al-Gamal, A.G., Salman, S.A., Feng, X. 2021. Chemical and bacterial quality monitoring of the Nile River water and associated health risks in Qena–Sohag sector, Egypt. Environmental Geochemistry and Health, 43(10), 4089–4104. https://doi.org/10.1007/s10653-021-00893-3
  • 2. Abuzaid, A. 2018. Evaluating surface water quality for irrigation in Dakahlia Governorate using water quality index and GIS. Journal of Soil Sciences and Agricultural Engineering, Mansoura University, 9(10), 481–490.
  • 3. Aguilar Quispe, M. 2015. Determinación y evaluación por zonas de los suelos para la construcción en el sector Paturpampa, Ciudad de Huancavelica, Provincia y Región Huancavelica http://repositorio.unh.edu.pe/handle/UNH/276
  • 4. Ahmed, S.S., Bali, R., Khan, H., Mohamed, H.I., Sharma, S.K. 2021. Improved water resource management framework for water sustainability and security. Environmental Research, 201, 111527. https://doi.org/https://doi.org/10.1016/j.envres.2021.111527
  • 5. Ahmed, T., Zounemat-Kermani, M., Scholz, M. 2020. Climate Change, Water Quality and WaterRelated Challenges: A Review with Focus on Pakistan. Int J Environ Res Public Health, 17(22). https://doi.org/10.3390/ijerph17228518
  • 6. ANA. 2019. Informe tecnico: Monitoreo participativo de calidad de agua de la cuenca Mantaro - agosto 2018. inia.minam.gob.pe/sites/default/files/siar-huancavelica/archivos/public/docs/6_resultados_de_monitoreo-_ambito_cuenca_mantaro_ agosto_2018.pdf
  • 7. ANA. 2020. Informe técnico: Monitoreo participativo de calidad de recursos hidricos - cuenca Mantaro – 2019 IV. https://sinia.minam.gob.pe/sites/default/files/siar-huancavelica/archivos/public/docs/it_iv_ monitoreocalidad_2019_final_12.05.2020_11.pdf
  • 8. APHA/AWWA/WEF. 2017. Standard Methods for the Examination of Water and Wastewater. In ( 23rd Edition ed.). Denver: American Public Health Association, American Water Works Association, Water Environment Federation.
  • 9. Ayala Bizarro, I. 2020. Estudio hidrológico de la sub cuenca del rio Ichu [Informe]. Gobierno Regional de Huancavelica. https://sinia.minam.gob.pe/sites/default/files/siar-huancavelica/archivos/public/docs/hidrologia_rio_ichu-completo_0.pdf
  • 10. Ayejoto, D.A., Egbueri, J.C. 2024. Human health risk assessment of nitrate and heavy metals in urban groundwater in Southeast Nigeria. Ecological Frontiers, 44(1), 60–72. https://doi.org/https://doi.org/10.1016/j.chnaes.2023.06.008
  • 11. Cerna-Cueva, A.F., Aguirre-Escalante, C., WongFigueroa, B.L., Tello-Cornejo, J.L., Pinchi-Ramírez, W. 2022. Water quality for irrigation in the Huallaga basin, Peru.
  • 12. Contreras López, E.G. 2021. Evaluación de la capacidad de la cáscara de Sanky como material adsorbente para la remoción de fosfatos en solución acuosa.
  • 13. Custodio, M., Peñaloza, R., Chanamé, F., Hinostroza-Martínez, J.L., De la Cruz, H. 2021. Water quality dynamics of the Cunas River in rural and urban areas in the central region of Peru. The Egyptian Journal of Aquatic Research, 47(3), 253–259. https://doi.org/10.1016/j.ejar.2021.05.006
  • 14. Das, R., Subba Rao, N., Sahoo, H.K., Sakram, G. 2023. Nitrate contamination in groundwater and its health implications in a semi-urban region of Titrol block, Jagatsinghpur district, Odisha, India. Physics and Chemistry of the Earth, Parts A/B/C, 132, 103424. https://doi.org/10.1016/j.pce.2023.103424
  • 15. Dimri, D., Daverey, A., Kumar, A., Sharma, A. 2021. Monitoring water quality of River Ganga using multivariate techniques and WQI (water quality index) in Western Himalayan region of Uttarakhand, India. Environmental Nanotechnology, Monitoring & Management, 15, 100375. https://doi.org/10.1016/j.enmm.2020.100375
  • 16. Ding, J., Li, H., Cuo, L., Yi, C. 2017. Water quality variation characteristics in stormwater period and on Weihe river time scale. Polish Journal of Environmental Studies, 26(6), 2495–2505.
  • 17. EPA. 2011. Provisional Peer-Reviewed Toxicity Values for Inorganic Phosphates (Orthophosphoric Acid and Inorganic Phosphate Compounds, Including Ortho- and Condensed Phosphates). United States Environmental Protection Agency. https://cfpub.epa.gov/ncea/pprtv/documents/Monopotassiumphosphate.pdf
  • 18. HHRA. 2019. Human Health Risk Assessment (HHRA) NOTE NUMBER 1: Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. Human Health Risk Assessment. https://dtsc.ca.gov/wp-content/uploads/sites/31/2022/02/HHRA-Note-1-April-2019-21A.pdf
  • 19. Huamaní Astocaza, L.L., Chávez Araujo, E.R., Sánchez Araujo, V.G., Sáez Huamán, W. 2022. Evaluación de materia orgánica de la microcuenca del Río Ichu, Perú. Revista Universidad y Sociedad, 14(2), 588–596.
  • 20. Isiuku, B.O., Enyoh, C.E. 2020. Pollution and health risks assessment of nitrate and phosphate concentrations in water bodies in South Eastern, Nigeria. Environmental Advances, 2, 100018. https://doi.org/https://doi.org/10.1016/j.envadv.2020.100018
  • 21. Ji, X., Shu, L., Chen, W., Chen, Z., Shang, X., Yang, Y., Zhang, M. 2022. Nitrate pollution source apportionment, uncertainty and sensitivity analysis across a rural-urban river network based on δ15N/ δ18O-NO3− isotopes and SIAR modeling. Journal of Hazardous Materials, 438, 129480. https://doi.org/10.1016/j.jhazmat.2022.129480
  • 22. Karaoui, I., Arioua, A., Elhamdouni, D., Nouaim, W., Ouhamchich, K.A., Hssaisoune, M. 2022. Assessing Water Quality Status Using a Mathematical Simulation Model of El Abid River (Morocco). J. Water Manag. Model, 30, 491.
  • 23. Kimbell, L.K., LaMartina, E.L., Kohls, S., Wang, Y., Newton, R.J., McNamara, P.J., Bradford, P.A. 2023. Impact of corrosion inhibitors on antibiotic resistance, metal resistance, and microbial communities in drinking water. mSphere, 8(5). https://doi.org/10.1128/msphere.00307-23
  • 24. Kükrer, S., Mutlu, E. 2019. Assessment of surface water quality using water quality index and multivariate statistical analyses in Saraydüzü Dam Lake, Turkey. Environmental Monitoring and Assessment, 191(2), 71. https://doi.org/10.1007/s10661-019-7197-6
  • 25. Li, L., Wu, J., Lu, J., Li, K., Zhang, X., Min, X., Xu, J. 2022. Water quality evaluation and ecologicalhealth risk assessment on trace elements in surface water of the northeastern Qinghai-Tibet Plateau. Ecotoxicology and Environmental Safety, 241, 113775. https://doi.org/10.1016/j.ecoenv.2022.113775
  • 26. MIDIS. 2023. Reporte regional de indicadores sociales del departamento de Huancavelica. In. Perú: Ministry of Development and Social Inclusion of Peru.
  • 27. MINAM. 2017. Decreto Supremo N° 004-2017-MINAM: Aprueban Estándares de Calidad Ambiental (ECA) para Agua y establecen Disposiciones Complementarias. In. Peru: Ministry of Environment of Peru.
  • 28. Parween, S., Siddique, N.A., Mahammad Diganta, M.T., Olbert, A.I., Uddin, M.G. 2022. Assessment of urban river water quality using modified NSF water quality index model at Siliguri city, West Bengal, India. Environmental and Sustainability Indicators, 16, 100202. https://doi.org/10.1016/j.indic.2022.100202
  • 29. Pasupuleti, S., Singha, S.S., Singha, S., Kumar, S., Singh, R., Dhada, I. 2022. Groundwater characterization and non-carcinogenic and carcinogenic health risk assessment of nitrate exposure in the Mahanadi River Basin of India. Journal of Environmental Management, 319, 115746. https://doi.org/10.1016/j.jenvman.2022.115746
  • 30. Prabagar, S., Thuraisingam, S., Prabagar, J. 2023. Sediment analysis and assessment of water quality in spacial variation using water quality index (NSFWQI) in Moragoda canal in Galle, Sri Lanka. Waste Management Bulletin, 1(2), 15–20. https://doi.org/10.1016/j.wmb.2023.05.002
  • 31. Pérez López, C. 2004. Técnicas de Análisis Multivariante de Datos Aplicaciones con SPSS. PEARSON EDUCACIÓN, S.A.
  • 32. Selvam, S., Nath, A.V., Roy, P.D., Jesuraja, K., Muthukumar, P. 2023. Evaluation of groundwater for nitrate and fluoride in Alappuzha region from the southwestern coast of India and associated health risks. Environmental Research, 236, 116791. https://doi.org/https://doi.org/10.1016/j.envres.2023.116791
  • 33. Shah, K.A., Joshi, G.S. 2017. Evaluation of water quality index for River Sabarmati, Gujarat, India. Applied Water Science, 7, 1349–1358.
  • 34. Sreejesh, S., Mohapatra, S., Anusree, M.R. 2014. Cluster Analysis. In S. Sreejesh, S. Mohapatra, & M. R. Anusree (Eds.), Business Research Methods: An Applied Orientation (pp. 229–244). Springer International Publishing. https://doi.org/10.1007/978-3-319-00539-3_10
  • 35. Sáez-Huamán, W., Contreras-Lopez, E., PortuguezMaurtua, M., Sánchez-Araujo, V., Palomino-Pastrana, P., Escobar-Soldevilla, M., Llahuilla, Q.J.A. 2023. Evaluation of the Concentration and Health Risks of Phosphates and Nitrates of a High Andean River. Ecological Engineering & Environmental Technology, 24.
  • 36. Uddin, M.G., Nash, S., Olbert, A.I. 2021. A review of water quality index models and their use for assessing surface water quality. Ecological Indicators, 122, 107218. https://doi.org/https://doi.org/10.1016/j.ecolind.2020.107218
  • 37. Uddin, M.G., Nash, S., Rahman, A., Olbert, A.I. 2022. A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment. Water Research, 219, 118532. https://doi.org/https://doi.org/10.1016/j.watres.2022.118532
  • 38. Vargas, J.D., Espinoza, F.Z., Araujo, V.G.S. 2024. Concentración de fosfatos y nitratos en el río Ichu parte urbana del distrito de Huancavelica. Polo del Conocimiento, 9(1), 1596–1605.
  • 39. Varol, M., Tokatlı, C. 2023. Evaluation of the water quality of a highly polluted stream with water quality indices and health risk assessment methods. Chemosphere, 311, 137096. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.137096
  • 40. Wills, M., Irvine, K.N. 1996. Application of the national sanitation foundation water quality index in Cazenovia Creek, NY, pilot watershed management project. Middle States Geographer, 1996, 95–104.
  • 41. Xiao, J., Gao, D., Zhang, H., Shi, H., Chen, Q., Li, H., Ren, X. 2023. Water quality assessment and pollution source apportionment using multivariate statistical techniques: a case study of the Laixi River Basin, China. Environ Monit Assess, 195(2), 287. https://doi.org/10.1007/s10661-022-10855-6
  • 42. Xiao, Z., Goraya, M.U., Ali, L., Chen, X., Yu, D. 2024. Nitrogen and phosphorus eutrophication enhance biofilm-related drug resistance in Enterococcus faecalis isolated from Water Sources. Microbial Pathogenesis, 186, 106501. https://doi.org/https://doi.org/10.1016/j.micpath.2023.106501
  • 43. Xie, S., Tran, H.-T., Pu, M., Zhang, T. 2023. Transformation characteristics of organic matter and phosphorus in composting processes of agricultural organic waste: Research trends. Materials Science for Energy Technologies, 6, 331–342. https://doi.org/https://doi.org/10.1016/j.mset.2023.02.006
  • 44. Xu, G., Wang, T., Wei, Y., Zhang, Y., Chen, J. 2022. Fecal coliform distribution and health risk assessment in surface water in an urban-intensive catchment. Journal of Hydrology, 604, 127204. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.127204
  • 45. Yapabandara, I., Wei, Y., Ranathunga, B., Indika, S., Jinadasa, K.B.S.N., Weragoda, S.K., Makehelwala, M. 2023. Impact of Lockdown on the Surface Water Quality in Kelani River, Sri Lanka. Water, 15(21), 3785.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d34737b5-c6f8-4023-8a26-9eed1fce4812
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.