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Abstract

Ridesharing is a mobility concept in which a trip is shared by a vehicle’s driver and
one or more passengers called riders. Ridesharing is considered as a more environmen-
tally friendly alternative to single driver commutes in pollution-creating vehicles on over-
crowded streets. In this paper, we present the core of a new strategy of the ridesharing
system, making it more flexible and competitive than the recurring system. More pre-
cisely, we allow the driver and the rider to meet each other at an intermediate starting
location and to separate at another intermediate ending location not necessarily their ori-
gins and destinations, respectively. This allows to reduce both the driver’s detour and
the total travel cost. The term “A priori approach” means that the driver sets the sharing
cost rate on the common path with rider in advance. An exact and heuristic approaches
to identify meeting locations, while minimizing the total travel cost of both driver and
rider are proposed. Finally, we analyze their empirical performance on a set of real road
networks consisting of up to 3,5 million nodes and 8,7 million edges. Our experimental
results show that our heuristics provide efficient performances within short CPU times
and improves the recurring ridesharing approach in terms of cost-savings.

1 Introduction

Ridesharing is a mobility concept in which a
trip is shared by a vehicle’s driver and one or more
passengers called riders. The idea is based on a
better use of private vehicles and concerns people
who are willing to intelligently ride in order to save
money. Ridesharing is also considered as a more
environmentally friendly alternative to single driver
commutes in pollution-creating vehicles on over-
crowded streets.

The effective use of new communication capa-
bilities, including mobile technology and global po-
sitioning system (GPS), enabled the emergence of

dynamic or real-time ridesharing systems. It con-
sists in automatically and instantly matching riders-
drivers through a network service by using a smart-
phone both as a geolocation and a communication
device. The ability of a dynamic ridesharing sys-
tem to successfully provide an instant matching de-
pends (i) on the characteristics of the environment
in terms of density of users of that service, traffic
patterns and availability of roadway and transit in-
frastructure (ii) on the efficiency of implemented
algorithms to tackle the underlying decision prob-
lems, such as optimal instant matching of drivers
and riders and efficient route-planning algorithms.
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In the recurring ridesharing problem, when an
offer is matched with a demand, the driver picks-up
the rider at his starting location, drops him off at his
ending location and continues to his target location.

This approach is the most implemented in
ridesharing services, but unfortunately, lacks flex-
ibility and misses some possible matchings. How-
ever, in order to get more opportunities of rideshar-
ing, a rider can accept two different intermediate
meeting locations. One for pick-up and another for
the drop-off. Specifically, the rider travels by his
own to the first intermediate location, where he will
be picked up by the driver and dropped off at the
second intermediate location, where he will con-
tinue to his ending location. These two intermediate
locations will be determined in a way that the to-
tal travel cost is minimized, and the detour costs of
the driver and the rider remain reasonable. The ma-
jority of ridesharing services ignore possible inter-
mediate stops, if they are not mentioned explicitly
beforehand by the rider or the driver. Thus, solv-
ing the problem of matching riders and drivers with
intermediate locations requires developing efficient
algorithms.

In this paper we consider the dynamic rideshar-
ing problem in which a driver and a rider want to
travel from their origins to their destinations. The
driver may pick up the rider at an intermediate lo-
cation and then to drop him off at another interme-
diate location. The driver sets the sharing cost rate
on the common path with the rider in advance. The
objective is to identify the best intermediate loca-
tions that minimize the total travel cost of both the
driver and the rider, while ensuring that their detour
costs remain reasonable.

(a)

(b)

Figure 1: Figure [a] represents the shortest paths of
the rider (green path) and the driver (red path) be-
fore matching. Figure [b] represents the new paths
of the driver and the rider after the matching with
two new intermediate locations (intermediate meet-
ing location are pointed with two black arrows and
the common path is represented with blue path).

The paper is organized as follows. In section 2,
we provide a concise survey on different problems
and approaches related to ridesharing. In section 3,
we detail the model of ridesharing with two inter-
mediate locations. In section 4, we provide exact
and heuristic approaches. In Section 5, we analyze
the performance of our algorithms. Finally, con-
cluding remarks are given in Section 6.

2 Background

In recent years, there has been a growing in-
terest in ridesharing systems both in academia and
industry (see [1] and [2]). The ridesharing pro-
cess is the following: a user indicating his status
(i.e. driver or rider) generates a request through
his smartphone. The request is sent to a cen-
tral server. Potential drivers/riders are then con-
tacted. Those might accept or reject the request.
If several drivers/riders have accepted the request,
then the rider/driver might choose which one he
prefers. In addition to the user’s status, other in-
formations must be specified. More precisely, if
the user is identified as a driver, then he specifies
if he’s willing to take a single rider or may be will-
ing to take multiple riders. On the other hand, if
he’s identified as a rider, he specifies if he wants
to ride with a single driver or may accept to ride
with multiple drivers and be transferred from one
driver to another. Hence, four variants can be dis-

Aissat K. and Oulamara A.

To the best of our knowledge, the only work that
considers the intermediate locations is addressed in
[16]. The authors propose exact and heuristic meth-
ods to find the pick-up and drop-off locations in a
multi-modal transportation network. Their objec-
tive is to minimize the total travel time for both
the driver and the rider. Despite the good perfor-
mance of their heuristic, it can be considered as very
time-consuming in the case of real-time rideshar-
ing. In our model, instead of minimizing the total
travel time, we minimize the total travel cost that, in
our study, is supposed to be time-independent (i.e.
the cost of travel between two locations is always
fixed and does not depend on time). Furthermore,
we consider additional constraints that ensure that
the ridesharing incurred cost of the driver (rider) is
more attractive than the incurred cost when he travel
alone. We suggest heuristic approaches for reduc-
ing the number of shortest path computations that
are based on the exact pruning algorithm. These
heuristic solutions are computed efficiently using a
constant number of shortest path computations and
provide almost exact results in practice.

3 Problem description and nota-
tion

The road network is represented by a weighted
graph G = (V,E), where V is the set of nodes and
E the set of edges. Nodes model intersections
and edges depict street segments. With each edge
(i, j) ∈ E two weights are associated. In our model,
w(i, j) represents the traveling cost and τ(i, j) the
traveling time. A path in a graph G is represented
by a vector µ = (u, . . . ,v) of nodes in which two
successive nodes are connected by an edge of E.
The length w(µ) of path µ is given by the sum of
the weights of all edges in µ. A shortest-path be-
tween a source node u and a target node v is the
path with minimal weight among all paths from u
to v. In the following, a shortest-path (in terms
of cost) between node u and node v will be repre-
sented by u → v. We consider an offer and a de-
mand of ridesharing represented by o = (s, t) and
d = (s′, t ′), respectively, where s and s′ (t and t ′) are
the starting (ending) locations of the driver and the
rider, respectively. An edge (i, j) has a nonnegative
traveling cost wk(i, j) depending on the fact that the
edge is used by driver (k = o) or by rider (k = d). In

the recurring ridesharing, an offer o is matched with
a demand d, if and only if there exists a shortest-
path γod = s → s′ → t ′ → t in graph G, such that
the driver’s detour cost (i.e wo(γod)−wo(s → t)) re-
mains reasonable, see (1)

wo(γod)−wo(s → t)≤ ε ·wo(s′ → t ′) (1)

The value of ε can be seen as a sharing cost rate be-
tween the rider and the driver on the common path
s′ → t ′. The term ε · wo(s′ → t ′) in (1) is the re-
ward that rider provides to driver. More precisely,
it represents the maximal detour that still guarantee
an incentive to the driver for pick up the rider at his
starting location s′ and to drop him off at his end-
ing location t ′. Clearly, if wo(γod)−wo(s → t) >
ε · wo(s′ → t ′), the driver does not accept the de-
mand d. The authors in [10] show that the reason-
able choice of ε is at most 0.5.

In the case of two intermediate locations, if the
rider accepts to travel on his own to intermediate lo-
cation r1 with a cost wd(s′ → r1), where he will be
picked up by the driver and dropped off at another
intermediate location r2, the rider will continue his
travel from r2 to t ′ on his own. Thus, the driver
and the rider will share wo(r1 → r2). Therefore,
the rider’s cost is wd(s′ → r1) + ε ·wo(r1 → r2) +
wd(r2 → t ′).

In a nutshell, we consider the general problem
of ridesharing with two intermediate locations r1
and r2 in which driver picks up the rider at the in-
termediate starting location r1 and drops him off at
the intermediate ending location r2. The rider trav-
els on his own from s′ to r1 and from r2 to t ′ (see
Figure 2).

s t

r1 r2

s′ t ′

Figure 2: The solid lines symbolize the paths of
the driver and the rider in order to form a joint
trip, whereas, the dashed ones stand for the short-
est paths of the driver and the rider.

In the following, we extend the definition given
in [10].
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In the recurring ridesharing problem, when an
offer is matched with a demand, the driver picks-up
the rider at his starting location, drops him off at his
ending location and continues to his target location.
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we detail the model of ridesharing with two inter-
mediate locations. In section 4, we provide exact
and heuristic approaches. In Section 5, we analyze
the performance of our algorithms. Finally, con-
cluding remarks are given in Section 6.

2 Background

In recent years, there has been a growing in-
terest in ridesharing systems both in academia and
industry (see [1] and [2]). The ridesharing pro-
cess is the following: a user indicating his status
(i.e. driver or rider) generates a request through
his smartphone. The request is sent to a cen-
tral server. Potential drivers/riders are then con-
tacted. Those might accept or reject the request.
If several drivers/riders have accepted the request,
then the rider/driver might choose which one he
prefers. In addition to the user’s status, other in-
formations must be specified. More precisely, if
the user is identified as a driver, then he specifies
if he’s willing to take a single rider or may be will-
ing to take multiple riders. On the other hand, if
he’s identified as a rider, he specifies if he wants
to ride with a single driver or may accept to ride
with multiple drivers and be transferred from one
driver to another. Hence, four variants can be dis-
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tinguished, namely, single-driver and single-rider,
single-driver and multiple-riders, multiple-drivers
and single-rider, and finally multiple-drivers and
multiple-riders. Table 1 shows the different cases
that might arise when a user enters the ridesharing
system.

Table 1: Variants of ridesharing system

Single rider Multiple riders
� One pick-up and

Single Simple matching drop-off location
driver between

driver/rider � Multiple pick-up and
drop-off locations

Multiple Rider is transferred � Routing drivers
drivers between drivers � Routing riders

Single-driver and Single-rider problem. In this
variant, each driver shares his trip with at most one
rider. So, for a given rider (driver), the system deter-
mines the best driver (rider) among a set of drivers
(riders) to share his trip. In [10], the authors con-
sider the problem of single-driver and single-rider,
the objective is to determine the driver’s offer that
can be used to serve the rider’s request with the min-
imal detour. In [7], the authors study the matching
optimization problem in which given a set of po-
tential users, each user can be either a driver or a
rider, and the objective is to minimize the vehicle-
kilometers. The decision consists in assigning a
role to each user and finding the optimal matching
of drivers with riders. The authors formulate the
problem as a general network flow problem with
additional constraints. The decision consists in as-
signing a role to each user and finding the optimal
matching of drivers with riders.

Single-driver and Multiple-riders problem. For
the variant single-driver and multiple-riders, two
cases may arise:

(i) the case where the driver is willing to pick-up
each rider at his origin and drop him off at his
destination. In this case, the system determines
a list of riders and an order of pick-up and drop-
off of riders. The authors in [4] propose both
exact and heuristic methods. Their approaches
are based on two integer programming formula-
tions. In [11], the authors develop a local search
based heuristic. In [12], the authors model the
ride-matching problem with time windows as an

optimization problem and they propose a genetic
algorithm to solve it. The objective is to mini-
mize the total travel time and the travel distance
of the drivers, the total travel time of the riders
and to maximize the number of the matches.

(ii) the case where the driver wants to pick-up all
riders at the same location and drop them off at
the same location. The system determines a list
of riders, the best pick-up location among their
origins and the best drop-off location between
their destinations. To the best of our knowl-
edge, no previous study was devoted to tackle
this variant in the literature.

Multiple-drivers and Single-rider problem. The
problem of single-rider and multiple-drivers, in
which a rider is transferred between drivers is stud-
ied by [13]. This particular problem of rideshar-
ing is called “multi-hop ridesharing problem”. The
objective is to find a route that minimizes the to-
tal travel costs and the number of transfers. The
problem is modeled as a multi-objective shortest
path problem on a time-expanded graph [14]. Re-
cently, a fast algorithm to generate the shortest path
satisfying the requirements of multi-hop rideshar-
ing was presented by [15]. The authors consider
a high number of stations in the road network
where riders may switch from one vehicle to an-
other. Their model was solved by exploiting time-
expanded graphs that are used for routing in trans-
portation networks.

Multiple-drivers and Multiple-riders problem.
This problem consists in determining simultaneous
routing for the drivers and the riders. More pre-
cisely, a driver can take several riders and at the
same time a rider can ride with multiple drivers.
Authors in [5] propose a genetic algorithm to solve
this problem with a limitation on the number of
drivers, that can be matched with a rider along his
trip to two.

The problem of ridesharing with intermediate
locations for pick-up and drop-off offers more flex-
ibility and increases the chance to obtain a route
planning minimizing total costs and/or total travel
time. In fact, by allowing the rider to reach a new
pick-up location and to drop him off at another
drop-off location not necessarily his destination, al-
lows to reduce the driver’s detour and to generate
more cost-savings.
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To the best of our knowledge, the only work that
considers the intermediate locations is addressed in
[16]. The authors propose exact and heuristic meth-
ods to find the pick-up and drop-off locations in a
multi-modal transportation network. Their objec-
tive is to minimize the total travel time for both
the driver and the rider. Despite the good perfor-
mance of their heuristic, it can be considered as very
time-consuming in the case of real-time rideshar-
ing. In our model, instead of minimizing the total
travel time, we minimize the total travel cost that, in
our study, is supposed to be time-independent (i.e.
the cost of travel between two locations is always
fixed and does not depend on time). Furthermore,
we consider additional constraints that ensure that
the ridesharing incurred cost of the driver (rider) is
more attractive than the incurred cost when he travel
alone. We suggest heuristic approaches for reduc-
ing the number of shortest path computations that
are based on the exact pruning algorithm. These
heuristic solutions are computed efficiently using a
constant number of shortest path computations and
provide almost exact results in practice.

3 Problem description and nota-
tion

The road network is represented by a weighted
graph G = (V,E), where V is the set of nodes and
E the set of edges. Nodes model intersections
and edges depict street segments. With each edge
(i, j) ∈ E two weights are associated. In our model,
w(i, j) represents the traveling cost and τ(i, j) the
traveling time. A path in a graph G is represented
by a vector µ = (u, . . . ,v) of nodes in which two
successive nodes are connected by an edge of E.
The length w(µ) of path µ is given by the sum of
the weights of all edges in µ. A shortest-path be-
tween a source node u and a target node v is the
path with minimal weight among all paths from u
to v. In the following, a shortest-path (in terms
of cost) between node u and node v will be repre-
sented by u → v. We consider an offer and a de-
mand of ridesharing represented by o = (s, t) and
d = (s′, t ′), respectively, where s and s′ (t and t ′) are
the starting (ending) locations of the driver and the
rider, respectively. An edge (i, j) has a nonnegative
traveling cost wk(i, j) depending on the fact that the
edge is used by driver (k = o) or by rider (k = d). In

the recurring ridesharing, an offer o is matched with
a demand d, if and only if there exists a shortest-
path γod = s → s′ → t ′ → t in graph G, such that
the driver’s detour cost (i.e wo(γod)−wo(s → t)) re-
mains reasonable, see (1)

wo(γod)−wo(s → t)≤ ε ·wo(s′ → t ′) (1)

The value of ε can be seen as a sharing cost rate be-
tween the rider and the driver on the common path
s′ → t ′. The term ε · wo(s′ → t ′) in (1) is the re-
ward that rider provides to driver. More precisely,
it represents the maximal detour that still guarantee
an incentive to the driver for pick up the rider at his
starting location s′ and to drop him off at his end-
ing location t ′. Clearly, if wo(γod)−wo(s → t) >
ε · wo(s′ → t ′), the driver does not accept the de-
mand d. The authors in [10] show that the reason-
able choice of ε is at most 0.5.

In the case of two intermediate locations, if the
rider accepts to travel on his own to intermediate lo-
cation r1 with a cost wd(s′ → r1), where he will be
picked up by the driver and dropped off at another
intermediate location r2, the rider will continue his
travel from r2 to t ′ on his own. Thus, the driver
and the rider will share wo(r1 → r2). Therefore,
the rider’s cost is wd(s′ → r1) + ε ·wo(r1 → r2) +
wd(r2 → t ′).

In a nutshell, we consider the general problem
of ridesharing with two intermediate locations r1
and r2 in which driver picks up the rider at the in-
termediate starting location r1 and drops him off at
the intermediate ending location r2. The rider trav-
els on his own from s′ to r1 and from r2 to t ′ (see
Figure 2).

s t

r1 r2

s′ t ′

Figure 2: The solid lines symbolize the paths of
the driver and the rider in order to form a joint
trip, whereas, the dashed ones stand for the short-
est paths of the driver and the rider.

In the following, we extend the definition given
in [10].
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s t

r1 r2

s′ t ′

Figure 2: The solid lines symbolize the paths of
the driver and the rider in order to form a joint
trip, whereas, the dashed ones stand for the short-
est paths of the driver and the rider.

In the following, we extend the definition given
in [10].
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Definition 1 Let ε > 0 (fixed by the driver), we say
that an offer o=(s, t) and a demand d =(s′, t ′) form
a reasonable fit if and only if there exist two inter-
mediate locations r1 and r2 (r2 �= r1) such that:

wo(s → r1)+wo(r1 → r2)+wo(r2 → t)

−wo(s → t)≤ ε ·wo(r1 → r2) (2)

wd(s′ → r1)+wo(r1 → r2)+wd(r2 → t ′)

−wd(s′ → t ′)≤ (1− ε).wo(r1 → r2) (3)

Applying the ε on the shared path gives both
the driver and the rider an incentive to meet in r1
and to separate in r2. The constraint (2) ensures
that the incurred cost of the driver using rideshar-
ing service is less than the incurred cost when he
travel alone. The same reasoning is applied for the
rider in the constraint (3). In the following, we use
the term global-path 〈s,s′,r1,r2, t, t ′〉 to describe the
concatenation of paths s → r1, s′ → r1, r1 → r2,
r2 → t and r2 → t ′. i.e. 〈s,s′,r1,r2, t, t ′〉 = s →
r1 ⊕ s′ → r1 ⊕ r1 → r2 ⊕ r2 → t ⊕ r2 → t ′.

A shortest global-path between source nodes s,
s′ and target nodes t, t ′ is the global-path with min-
imal weight w(s,s′,r1,r2, t, t ′) of any global-path
from s, s′ to t, t ′, where

w(s,s′,r1,r2, t, t ′) = wo(s → r1)+wd(s′ → r1)

+wo(r1 → r2)+wo(r2 → t)+wd(r2 → t ′) (4)

The objective is to determine the best intermedi-
ate locations r1 and r2 that minimize the shortest
global-path such that constraints (2) and (3) are sat-
isfied.

4 Solution approach

In this section, we propose two solving ap-
proaches for our model. The first approach is an
enumerative approach, the second approach is a
heuristic one. These approaches are based on com-
puting several shortest paths.

Route planning in road networks is solvable by
Dijkstra’s algorithm [17]. Specifically, with Dijk-
stra’s seminal algorithm being the baseline, a num-
ber of techniques pre-process the static input graph
to achieve drastic speedup. Contraction Hierar-
chies (CH) is a speedup-technique that has a con-
venient trade-off between preprocessing effort and
query efficiency. Road network with millions of

nodes and edges can be preprocessed in a few min-
utes while queries run in about a hundred microsec-
onds. Transit Node Routing (TNR) is one of the
fastest speed-up techniques for shortest path dis-
tance queries in road networks. By preprocessing
the input road network even further, it yields almost
constant-time queries, in the sense that nearly all
queries can be answered by a small number of table
lookups.

Based on the matching constraints previously
defined, the two approaches start by limiting the
search space for the intermediate locations. Espe-
cially, given a driver offer o = (s, t) and a rider de-
mand d = (s′, t ′), we determine two subclasses C1
and C2 of nodes. Class C1 (C2) contains all nodes
candidate to be an intermediate starting (ending) lo-
cation.

Definition 2 Let N↑(s), N↑(s′), N↓(t) and N↓(t ′) be
the sets of nodes, such that,

N↑(s) = {v ∈V | wo(s → v)+(1− ε) ·wo(v → t)

≤ wo(s → t)}
N↓(t) = {v ∈V | (1− ε) ·wo(s → v)+wo(v → t)

≤ wo(s → t)}
N↑(s′) = {v ∈ V | wd(s′ → v)≤ wd(s′ → t ′)}
N↓(t ′) = {v ∈V | wd(v → t ′)≤ wd(s′ → t ′)}

The set N↑(s) represents the potential interme-
diate starting locations of the driver. Indeed, if v
as the intermediate starting location, the best situ-
ation for the driver is to share the cost wo(v → t)
with the rider, then if the node v does not respect
this constraint, it will never satisfy the constraint of
cost detour.

On the other hand, the set N↓(t) represents
the potential intermediate ending locations of the
driver. Taking v as the intermediate ending loca-
tion, the best situation for the driver in this case is
to share the cost wo(s → v) with the rider.

The same reasoning is applied to the rider in
N↑(s′) and N↓(t ′). The case where the driver and the
rider have the same cost, the sets N↑(s′) and N↓(t ′)
will become

N↑(s′) = {v ∈ V | wd(s′ → v)+ ε ·wo(v → t ′)

≤ wd(s′ → t ′)}
N↓(t ′) = {v ∈V | ε ·wo(s′ → v)+wd(v → t ′)

≤ wd(s′ → t ′)}
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The following lemma characterizes the set of
potential intermediate locations.

Lemma 1 A node v ∈ V is a potential interme-
diate node if and only if v ∈ C = C1 ∪ C2 where
C1 = N↑(s)∩N↑(s′) and C2 = N↓(t)∩N↓(t ′).

4.1 Enumerative approach

Given two intermediate starting and ending lo-
cations, it is easy to check if these locations form a
reasonable fit, i.e. satisfying constraints (2) and (3).
The enumerative approach lists all possible pairs of
intermediate locations (r1,r2) in C and selects the
pair of intermediate locations (r∗1,r

∗
2) with minimal

global-path cost and satisfying constraints (2) and
(3).

To this aim, we compute (i) two backward one-
to-all Dijkstra algorithm, with t and t ′ as target
nodes, respectively, (ii) two forward one-to-all Di-
jkstra algorithm, with s and s′ as source nodes, re-
spectively, and finally (iii) one forward one-to-all
Dijkstra algorithm, for each intermediate location r
in C1 as source node (except s and s′) to all nodes of
C2. The detailed method is given in Algorithm 1.

Algorithm 1 Enumerative method
1: Input: Graph G(V,E), source nodes s, s′ and target

nodes t, t ′

2: Output: Intermediate locations r∗1 and r∗2, global-
path GP(s,s′,r∗1,r

∗
2, t, t

′).

3: Initialization: w(GPmin)← ∞.
4: Compute two backward one-to-all Dijkstra algo-

rithm, with t and t ′ as target nodes in order to de-
termine C1

5: Compute two forward one-to-all Dijkstra algorithm,
with s and s′ as source nodes in order to determine
C2

6: for each r1 in C1 do
7: Compute one forward one-to-all Dijkstra algo-

rithm, with r1 as source node
8: for each r2 in C2 do
9: Compute w(s,s′,r1,r2, t, t ′) as described in

equation (4)
10: if w(s,s′,r1,r2, t, t ′) < w(GPmin) and r1 �= r2

and constraints (2) and (3) are verified then
11: GPmin ← w(s,s′,r1,r2, t, t ′).
12: (r∗1,r

∗
2)← (r1,r2).

13: end if
14: end for
15: end for

Even if the enumerative approach provides a
solution in quadratic complexity time, the com-
putation time can be too long for large instances
with real road networks. In particular, when the
proposed approach is used in real-time ridesharing
problem, a solution should be provided in few sec-
onds. In the following section, we propose heuristic
approaches with a lower-time complexity.

4.2 Heuristic approaches

We propose two efficient heuristics for interme-
diate selection that minimize the objective (4) and
satisfy constraints (2) and (3).

To do so, we define two metrics based on travel
cost which will be used to separate a class C into
two disjoint subclasses. Thus, class C1 will con-
tain only potential intermediate starting locations
and class C2 will contain only potential intermediate
ending locations. Next, we compute for each node
v in C2 the optimal global path having node v as in-
termediate ending location. Once global paths have
been enumerated, we select the global-path with
minimal cost that satisfies constraints (2) and (3).
In the following, we provide a detailed description
of the components of our heuristics.

Closest nodes metric (M1)

The first metric M1 classifies the nodes of C1 ∩
C2 either in C1 or in C2, based on their locations rel-
ative to sources nodes s, s′ and target nodes t, t ′.
Indeed, if a node is closer to the source nodes than
the target nodes, then this node is removed from C2,
otherwise, the node is removed from C1.

More formally, given a node v ∈ C1 ∩ C2, if
wo(s → v)+wd(s′ → v) ≤ wo(v → t)+wd(v → t ′)
then v is removed from class C2, otherwise, v is re-
moved from class C1 (see Figure 3).
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with real road networks. In particular, when the
proposed approach is used in real-time ridesharing
problem, a solution should be provided in few sec-
onds. In the following section, we propose heuristic
approaches with a lower-time complexity.

4.2 Heuristic approaches

We propose two efficient heuristics for interme-
diate selection that minimize the objective (4) and
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To do so, we define two metrics based on travel
cost which will be used to separate a class C into
two disjoint subclasses. Thus, class C1 will con-
tain only potential intermediate starting locations
and class C2 will contain only potential intermediate
ending locations. Next, we compute for each node
v in C2 the optimal global path having node v as in-
termediate ending location. Once global paths have
been enumerated, we select the global-path with
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In the following, we provide a detailed description
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C2 either in C1 or in C2, based on their locations rel-
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moved from class C1 (see Figure 3).

A PRIORI APPROACH OF REAL-TIME. . .
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v

s′ t ′

C1 C2

Figure 3: Node classification according to M1. The
node v is close to the origins of rider and driver, so it
is classified in C1, and removed from C2. Red lines
correspond to driver path, while green lines corre-
spond to rider path.

Global path’s total cost Metric (M2)

The second metric M2 improves the quality of
metric M1 by estimating the cost of global-path
from s, s′ to t, t ′. More precisely, given a node v ∈
C1 ∩C2, if wo(s → v)+wd(s′ → v)+α ≤ wo(v →
t) +wd(v → t ′) + β, then v is removed from class
C2, otherwise, v is removed from class C1, where α
and β are given as follows:

α=max















min
k �=v

wo(v,k)+min
r �=v

{

wo(r→t)+wd(r→t ′)
}

(5a)

min







wo(v → t ′)+wo(t ′ → t) (5b)
wo(v → t)+min

r �=v
wd(r, t ′) (5c)

β=max















min
r �=v

{

wo(s→r)+wd(s′→r)
}

+min
k �=v

wo(k,v) (6a)

min







wo(s → s′)+wo(s′ → v) (6b)
wo(s → v)+min

r �=v
wd(s′,r) (6c)

If v is a starting intermediate node, α is a lower
bound of all paths of the driver and the rider from
the starting intermediate location v to their destina-
tions with at least a common sub-path.

It is easy to see that wo(v → u) ≥
mink �=v wo(v,k) and wo(u → t) + wd(u → t ′) ≥
minr �=v {wo(r → t)+wd(r → t ′)}, then equation
(5a) is a valid lower bound.

In equations (5b) and (5c), the ending interme-
diate node is the target node t ′ and a node k that
belongs to the shortest path v → t, respectively (see
Figure 4). β is a lower bound of all paths of the
driver and the rider from their starting locations to
the intermediate ending location v with at least a
common sub-path.

Equations (6a), (6b) and (6c) are symmetric
lower bounds corresponding to equations (5a), (5b)
and (5c), respectively, when v is the ending inter-
mediate node (see Figure 5).
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Figure 4: Estimation of global-path cost taking v
as intermediate meeting location. Red lines corre-
spond to driver paths, while green lines correspond
to rider paths. The dashed lines correspond to the
estimation of remaining cost from meeting location
v to their destinations (α).
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Figure 5: Estimation of global-path cost taking v
as intermediate separate location. Red lines corre-
spond to driver paths, while green lines correspond
to rider paths. The dashed lines correspond to the
estimation of remaining cost from their origins to
the separate location v (β).
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After constructing the two classes C1 and C2,
the next step determines the shortest global-path
with a given intermediate ending node. For this
purpose, let us define a new graph G′(V ′ = V ∪
{s�} ,E ′ = E ∪ E�), where a specific node s� is
added to graph G and for each node u ∈ C1, an arc
(s�,u) ∈ E�, having a cost w(s�,u) = wo(s → u)+
wd(s′ → u), is added to graph G. The arc (s�,u)
represents the driver and the rider moves out from
their starting locations to the intermediate node u.
Note that the considered arcs’ costs in the set E is
the driver cost (see Figure 6).
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Figure 6: Sub-figure (a) represents an example of
a graph G consisting of 8 nodes. The sub-figure (b)
represents the new transformed graph G′ that con-
sists of two disjoint classes C1 (green nodes) and C2
(blue nodes). The node e belongs neither to C1 nor
to C2.

We denote by Φ(v) = (s�,φ(1), . . . ,φ(k),v) a dipath
in graph G′, where s� and v are, respectively, the
initial and the final node. Then the following facts
hold:

Fact 1 Any dipath Φ(v) = (s�,φ(1), . . . ,φ(k),v) in
G′ verifies that φ(1) ∈ C1.

Fact 2 Given an optimal dipath Φ(v) =
(s�,φ(1), . . . ,φ(k),v), having v ∈ C2, with a
cost w(Φ), a global-path GP(s�,s′,φ(1),v, t, t ′)
can be derived from the latter dipath, where
φ(1) and v correspond to the intermediate
starting and ending nodes, respectively, and

w(GP(s�,s′,φ(1),v, t, t ′)) = w(Φ(v)) + wo(v →
t)+wd(v → t ′).

A straightforward consequence is the following.

Corollaire. 1 Let Ω be the set of the shortest global
paths, such that for each v in C2, one shortest
global path having v as an intermediate ending lo-
cation is added to Ω. Then, Ω can be computed
in O(|V ′| log |V ′|+ |E ′|)-time by using the forward
one-to-all Dijkstra algorithm with Fibonacci heap
from s� to all nodes in C2 in graph G′.

Finally, the last step selects the solution with the
minimal global-path cost that satisfies constraints
(2) and (3). The detailed approach is given in Algo-
rithm 2.

Algorithm 2 Heuristic approach with metric Mi

1: Input: Graph G(V,E), source nodes s, s′ and target
nodes t, t ′.

2: Output: Intermediate locations r∗1 and r∗2, global-
path GP(s,s′,r∗1,r

∗
2, t, t

′).
3: Initialization: C = /0, C1 = /0 and C2 = /0.
4: Compute two backward one-to-all Dijkstra algo-

rithm with t and t ′ as target nodes.
5: Compute two forward one-to-all Dijkstra algorithm

with s and s′ as source nodes.
6: Compute one forward one-to-all Dijkstra algorithm

from s′ with driver cost.
7: Compute one backward one-to-all Dijkstra algo-

rithm from t ′ with driver cost.
8: for All r in V do
9: If r ∈ N↑(s) AND r ∈ N↑(s′) then C1 = C1 ∪{r}.

10: If r ∈ N↓(t) AND r ∈ N↓(t ′) then C2 = C2 ∪{r}.
11: If r in C1 ∩C2, then test the condition of metric

Mi and remove r from the appropriate class C1 or
C2.

12: end for
13: Add node s� to graph G and connect s� to all

nodes of class C1 with cost w(s�,u) = wo(s → u)+
wd(s′ → u).

14: Compute the forward one-to-all Dijkstra algorithm
on the new constructed graph from s� to all nodes in
C2.

15: Select the shortest path in the new constructed graph
that satisfies constraints (2) and (3) with two inter-
mediate nodes r∗1 ∈ C1 and r∗2 ∈ C2.

Complexity. In order to reduce the computa-
tional time of our heuristics, we start by comput-
ing and saving two backward one-to-all Dijkstra’s
algorithm with t and t ′ as target nodes, and two for-
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ward one-to-all Dijkstra’s algorithm with s and s′ as
source nodes. We also compute one forward one-to-
all Dijkstra’s algorithm from s′ with driver cost, and
one backward one-to-all Dijkstra’s algorithm from
t ′ with driver cost. These computations allow us to
determine the class C by computing N↑(s), N↑(s′),
N↓(t), N↓(t ′) and the cost of the edges in E ′. These
steps are done in O(6(|V | log |V |+ |E|))-time. Fur-
thermore, the computation of metrics M1 and M2
can be done in O(|V |)-time. Thus, a collection of
global-path is obtained by solving a forward one-
to-all Dijkstra’s algorithm from s� to all nodes of C2
in O(|V ′| log |V ′|+ |E ′|)-time. Finally, the selection
of the best global-path that satisfies constraints (2)
and (3) can be done in the same time when a col-
lection of global-paths is calculated. Thus, it fol-
lows that the proposed heuristic can be computed in
O(6(|V | log |V |+ |E|)+ |V |+(|V ′| log |V ′|+ |E ′|))-
time. When the driver and the rider have the same
cost, the complexity of our heuristic is reduced to
O(4(|V | log |V |+ |E|)+ |V |+(|V ′| log |V ′|+ |E ′|)).
In the following, we denote by H M 1 and H M 2
the heuristic versions that use metric M1 and M2,
respectively.

4.3 Time windows constraint

The solving approach proposed in the previous
section can be easily generalized when departure
time windows of the rider and the driver are spec-
ified. In fact, in reality, for each offer o = (s, t)
and demand d = (s′, t ′), we specify the departure
time windows that will be denoted by T W o(s) =
[to s

min, t
o s
max], T W d(s′) = [td s′

min , t
d s′
max], respectively. In

that case, we need to extend the class C1 defined in
lemma 1.

Initially, all nodes except s, s′, have an empty
departure window. Then, when we calculate the
sets N↑(s) and N↓(s′), the departure time window of
each reached node will be updated. More precisely,
if a node v is settled by s in the set N↑(s), its de-
parture time window will be updated as T W o(v) =
[to s

min + τo(s → v), to s
max + τo(s → v)].

The nodes that are in both search spaces N↑(s)
and N↓(s′) will have two departure time windows,
one from the offer o, and another from the demand
d. Finally, each node v in N↑(s)∩ N↓(s′) (where
T W o(v)∩T W d(v) = /0) is removed from the class

C1, i.e. the rider and the driver can not meet each
other at this location. Furthermore, our algorithm
can potentially take advantage of this constraint
which allows to reduce the number of edges in-
serted in the constructed graph.

5 Experiments

The proposed heuristics as well as the recurring
ridesharing approach were computationally com-
pared. The results were evaluated in terms of qual-
ity, number of matchings and running-time.

Environment. All experiments were carried out
on an Intel Xeon E5620 2.4 Ghz processor, with
8 GB RAM memory. The tested algorithms were
coded in C language. A binary heap was used as
the priority queue data structure.

Road network. In our experiments, the USA
road graphs derived from the available data of DI-
MACS1 challenge website were used. Table 2 lists
the 4 USA road networks that were used. Each
graph includes the real distances, the transit times
and the node coordinates.

Table 2: Instances

Name Description # of nodes # of arcs
E Eastern USA 3,598,623 8,778,114

FLO Florida 1,070,376 2,712,798

COL Colorado 435,666 1,057,066

NY New York City 264,346 733,846

Each node can be either an intermediate starting
or an ending location in which the driver and the
rider can meet each other. In our experiments, the
real distances are considered as the traveling costs.

Generated instances. For each road network,
we randomly generate the offers and the demands.
More precisely, we build two scenarios.

In the first scenario (S1), we generate 10 of-
fers oi = (si, ti), and for each offer oi, we gen-
erate 10 instances. For each instance, a demand
d j = (s′j, t

′
j) is generated such that its starting loca-

tion s′j (ending location t ′j) is situated within a radius
R1= r1 ×w(µ∗i ) of the starting si (ending location ti)
of the offer oi, where µ∗i is the shortest path from si

1http://www.dis.uniroma1.it/challenge9/download.shtml



296 Aissat K. and Oulamara A.

to ti. Thus, 100 instances are generated in scenario
1.

sisi titi
R1 R1

s
′
j t

′
j

Figure 7: Generated instances according to sce-
nario 1. The origin and destination of the riders are
respectively generated around si and ti. R1 corre-
sponds to the radius of the two circles.

In the second scenario (S2), again 100 instances
are generated such that, for each instance, both
starting location s′j and ending location t ′j of the de-
mand d j are generated within a radius R2 = r2 ×
w(µ∗i ) of starting location si of offer oi (the same
reasoning can be applied around the ending loca-
tion ti).

sisi ti
R2

s
′
j t

′
j

Figure 8: Generated instances according to sce-
nario 2. The origin and destination of the riders are
generated around the same location (either driver’s
origin or driver’s destination), that is here, the ori-
gin of driver si. R2 corresponds to the radius of the
circle.

In all scenarios, the offers and the demands have
departure time windows T W o(si) =]−∞,+∞[ and
T W d(s′j) =] − ∞,+∞[, respectively. In other
words, the driver and the rider are willing to travel
at any time during the day.

For both scenarios, we derived (i) the number
of driver-rider’s matching detected by our heuristics
and the recurring ridesharing approach compared
to our enumerative approach, (ii) the gap with re-
spect to the exact solution of the currently detected
matchings and (iii) the time of calculation. We as-
sume that the driver and the rider have the same

cost, and the cost of the common path is shared eq-
uitably between them (i.e. ε = 0.5). After several
test, we set r1 = 0.4 and r2 = 0.3.

Table 2 reports the results of the four tested al-
gorithms (recurring ridesharing approach, H M 1,
H M 2, enumerative approach). For each approach,
the following results are reported:

– Gap: the deviation of algorithms with respect to
the optimal solution.

– Time: the required CPU time in seconds.

– Match: the percentage of number matching
found.

In columns Gap and Time, we consider the average
values on the 100 generated instances for each net-
work.

The results show the effectiveness of the pro-
posed approaches:

– Our heuristics deliver very-high quality solu-
tions. In scenario 1, all demands are matched
with both metrics M1 and M2, whereas, at
most 54% of demands are matched with recur-
ring ridesharing approach. Moreover, heuristics
H M 1 and H M 2 provide optimal solutions for
networks E, COL and NY, and efficient solutions
with a Gap = 0,02% for network FLO.

– Scenario 2 shows a sensitivity around the H M 1
heuristic. Matchings are not well detected by
M1 because in this metric, the partitioning of po-
tential nodes is based only on their distance to
(s,s′) and (t, t ′). Thus, M1 performance is dete-
riorated by detecting at most 86.95% of match-
ings with a Gap of 0.44%. Concerning the
H M 2 approach, the percentage of matching in-
creases up to 95.65% with an interesting Gap
which does not exceed the 0.1%, resulting in a
better stability of metric M2.

The recurring ridesharing approach detects at
most 30% of matching with a significant Gap
which reaches 17.67% (see Figure 9). The Gap
of recurring ridesharing approach can be consid-
ered as the additional cost-savings generated by
using approach with intermediate locations.

– Our heuristics provide high quality solutions
within short CPU times. Heuristic using met-
ric M1 is slightly less time consuming. This can
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posed approaches:
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tions. In scenario 1, all demands are matched
with both metrics M1 and M2, whereas, at
most 54% of demands are matched with recur-
ring ridesharing approach. Moreover, heuristics
H M 1 and H M 2 provide optimal solutions for
networks E, COL and NY, and efficient solutions
with a Gap = 0,02% for network FLO.

– Scenario 2 shows a sensitivity around the H M 1
heuristic. Matchings are not well detected by
M1 because in this metric, the partitioning of po-
tential nodes is based only on their distance to
(s,s′) and (t, t ′). Thus, M1 performance is dete-
riorated by detecting at most 86.95% of match-
ings with a Gap of 0.44%. Concerning the
H M 2 approach, the percentage of matching in-
creases up to 95.65% with an interesting Gap
which does not exceed the 0.1%, resulting in a
better stability of metric M2.

The recurring ridesharing approach detects at
most 30% of matching with a significant Gap
which reaches 17.67% (see Figure 9). The Gap
of recurring ridesharing approach can be consid-
ered as the additional cost-savings generated by
using approach with intermediate locations.

– Our heuristics provide high quality solutions
within short CPU times. Heuristic using met-
ric M1 is slightly less time consuming. This can
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Table 3: Performance of algorithms

Network Classic ridesharing H M 1 H M 2 Enumerative-M
Match Gap Match Gap Time Match Gap Time Time

(%) (%) (%) (%) (s) (%) (%) (s) (s)
E 54 8.39 100 0 7.32 100 0 7.54 6531.3

S1 FLO 38 11.01 100 0.02 1.77 100 0.02 1.84 1557.33
COL 38 9.08 100 0 0.78 100 0 0.84 690
NY 38 8.14 100 0 0.47 100 0 0.49 450
E 4.76 17.67 80.95 0.01 7.46 95.23 0.03 7.65 6676.23

S2 FLO 13.04 3.43 86.95 0.44 1.79 95.65 0.05 1.85 1642.5
COL 30.55 6.18 72.22 0.34 0.8 86.11 0.10 0.86 657
NY 9.67 2.36 74.19 0.83 0.47 93.54 0.07 0.49 421

be explained by the fact that H M 2 approach re-
quires additional time due to pre-processing, but
it remains in the order of microseconds.

Regarding results of scenario 2 on COL and E
instances, M1 works as well as M2 in terms of Gap.
This is due to the fact that the Gap is calculated over
instances where matching is found, and M2 detects
more matchings than M1. In order to have a better
idea on the performance of each metric, we com-
pare our heuristics on instances where a matching
is found by both M1 and M2, hereafter denoted by
I . Table 4 reports the results for the two heuris-
tics H M 1 and H M 2. Column BM1

gives the per-
centages in cases where a better solution is obtained
only by H M 1. Whereas column BM2

shows the
percentages in cases where a better solution is ob-
tained only by H M 2.

Table 4: Performance of H M 1 and H M 2 on in-
stance I

Network H M 1 H M 2
BM1

Gap BM2
Gap

(%) (%) (%) (%)
E 0 0 0 0

S1 FLO 0 0,02 0 0,02
COL 0 0 0 0
NY 0 0 0 0
E 0 0,01 34,78 0

S2 FLO 0 0,44 25 0,03
COL 0 0,02 15,38 0
NY 0 0,84 5,55 0,02

From Table 4, we observe that H M 2 outper-
forms H M 1, in particular for the instances of sce-
nario 2. Indeed, for FLO and NY instances, the Gap
of H M 1 is, respectively, 0.44% and 0.84%, but for
H M 2, the Gap is equal to 0.03% and 0.02%, re-

spectively.
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Scenario 1
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Figure 9: Match (%) visualization of two scenar-
ios. Figure (a) concerns the scenario 1, while figure
(b) concerns the scenario 2.
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6 Conclusion

In this work, we have modeled a new case of dy-
namic ridesharing with intermediate locations and
provided efficient approaches to solve it. The objec-
tive function is to minimize the sum of costs spent
by the driver and the rider. The experimental results
show the effectiveness and efficiency of our system
compared to the recurring approach of ridesharing
in terms of cost-savings. We used a simple objec-
tive function, which, although appropriate for cer-
tain types of users, might be redefined in several
terms: the deviation from the origin-destination trip
for the driver, the total travel time, etc. Our ap-
proach can integrate those features as a weighted
sum in the objective function. The matching selec-
tion is assumed done based on geographical infor-
mation between a driver and a rider. Nevertheless,
our method can be included to improve the match-
ing. While we only consider two agents, our ap-
proach may be extended to a few number of riders
and one driver, either by using the same pick-up and
drop-off points or by enumerating the set of pick-
up and drop-off points. Finally, the introduction of
acceleration approaches such as contraction hierar-
chies [19] in our algorithms may be considered.
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