PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Explicit commutativity conditions for second-order linear time-varying systems with non-zero initial conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although the explicit commutativitiy conditions for second-order linear time-varying systems have been appeared in some literature, these are all for initially relaxed systems. This paper presents explicit necessary and sufficient commutativity conditions for commutativity of second-order linear time-varying systems with non-zero initial conditions. It has appeared interesting that the second requirement for the commutativity of non-relaxed systems plays an important role on the commutativity conditions when non-zero initial conditions exist. Another highlight is that the commutativity of switched systems is considered and spoiling of commutativity at the switching instants is illustrated for the first time. The simulation results support the theory developed in the paper.
Rocznik
Strony
529--548
Opis fizyczny
Bibliogr. 43 poz., rys., wykr., wzory
Twórcy
  • Department of Mathematics, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
Bibliografia
  • [1] R. Boylestad and L. Nashelsky: Electronic Devices and Circuit Theory, 7th ed. New Jersey, Prentice Hall, 2013.
  • [2] R. C. Dorf and J. A. Svoboda: Introduction to Electric Circuits. Wiley International Edition, 2004.
  • [3] D. Vasileska and S. M. Goodnick: Computational Electronics. Morgan & Claypool Publishers, 2006.
  • [4] C. Jaeger and T. N. Blalock: Microelectronic Circuit Design, 3rd ed. Boston, McGraw-Hill, 2006.
  • [5] E. Marshal: Commutativity of time varying systems. Electronics Letters, 13 (1977), 539–540.
  • [6] M. Koksal: Commutativity of second order time-varying systems. International Journal of Control, 36 (1982), 541–544.
  • [7] M. Koksal: General conditions for the commutativity of time-varying systems. In: International conference on telecommunication and control, Halkidiki, Greece, Aug 1984, pp. 223–225.
  • [8] M. Koksal: Asurvey on the commutativity of time-varying systems. METU Gaziantep Eng. Faculty, Tech. Rept. No: GEEE CAS-85/1, 1985.
  • [9] M. Koksal: An exhaustive study on the commutativity of time-varying systems. International Journal of Control, 47 (1988), 1521–1537.
  • [10] M. Koksal and M. E. Koksal: Commutativity of linear time-varying differential systems with nonzero initial conditions: A Review and some new extensions. Mathematical Problems in Engineering, 2011, 1–25.
  • [11] M. Koksal: Effects of initial Conditions on the commutativity and effects of commutativity on the sensitivity (in Turkish). In: Proceeding of the 2nd national congress of electrical engineers. Ankara, Turkey, 1987, pp. 570-573.
  • [12] M. Koksal: Effects of non-zero initial conditions on the commutativity of linear time-varying systems. In: Proceeding of the international AMSE conference on modelling and simulation. Istanbul, Turkey, 1988, vol. 1A, pp. 49–55.
  • [13] M. Koksal: Effects of commutativity on system sensitivity. In: Proceeding of the 6th int. symposium on networks, systems and signal processing. Zargeb, Yugoslavia, 1989, pp. 61–62.
  • [14] K. Korcz, B. Palczynska, and L. Spiralski: Uncertainty in measuring noise parameters of a communication Receiver. In: AIP conference proceedings: international conference on noise and fluctuations, Salamanca, Spain, 2005, 780, pp. 1.
  • [15] E. Hossain, V. K. Bhargava, and G. P. Fettwies: Green radio communication networks. Cambridge, Cambridge University Press, 2012.
  • [16] M. S. Ghausi and K. R. Laker: Modern filter design: active RC and switched capacitor. New Jersey, Prentice-Hall, Englewood Cliffs, 1981.
  • [17] M. Fortunate: Circuit sensitivity with emphasis an analog filters, minds in motion. In: Texas instruments developer conference, Dallas, TX, USA, 2007.
  • [18] E. Rozenwasser and R. Yusupov: Sensitivity of automatic control systems, CRC Press, 1999.
  • [19] A. Varma, M. Morbidelli, and H. Wu: Parametric sensitivity in chemical systems. Cambridge, Cambridge University Press, 2010.
  • [20] C. Wang, L. Xing, V. M. Vokkarane, and Y. L. Sun: Infrastructure communication sensitivity analysis of wireless sensor networks. Quality and Reliability Engineering, 32 (2016), 581–594.
  • [21] G. Zames: Input-output feedback stability and robustness. IEEE Control Systems, 16 (1996), 61–66.
  • [22] A. Weng and J. Sun: Impulsive stabilization of second-order nonlinear differential systems. Applied Mathematics and Computations, 214 (2009), 95–101.
  • [23] G. B. Arfken and H. J. Weber: Mathematical methods for physicists. Elsevier Academic Press, 2005.
  • [24] W. Magnus and S. Winkler: Hill’s equation. Courier, 2013.
  • [25] G. Teschl: Ordinary differential equations and dynamical systems. American Mathematical Society, 2012.
  • [26] W. T. Reid: Riccati differential equation. New York, Academic Press, 1972.
  • [27] D. Zwillinger: Handbook of differential equations, 3rd ed. Boston, Academic Press, 1997, p. 125.
  • [28] G. F. Simmons: Differential equations with applications and historical notes. New York, McGraw-Hill, 1972, pp. 62–63.
  • [29] M. Koksal: Commutativity of second order time-varying systems. In: Proceeding of the 6th summer symposium on circuit theory, Prague, Czechoslovakia, Jul 1982, pp. 305–309.
  • [30] M. Koksal: Commutativity of loworder time-varying systems. In: Proceeding of the 7th colloq. on microwave communication, Budapest, Hungary, Sep 1982, pp. 230–231.
  • [31] S. V. Salehi: Comments on Commutativity of second-order time-varying systems. International Journal of Control, 37 (1983), 1195–1196.
  • [32] M. Koksal: Corrections on Commutativity of second-order time-varying systems. International Journal of Control, 38 (1983), 273–274.
  • [33] C. G. Cullen: Matrices and linear transformations, 2nd ed. New York, Dover Publications Inc. Press, 1991.
  • [34] D. C. Lay, S. R. Lay, and J. McDonald: Linear algebra and its applications, 5th ed. Pearson cloth, 2016.
  • [35] K. J. Astrom and R. M. Murray: Feedback systems – an introduction for scientists and engineers. Aniston and Oxford, Princeton University Press, 2010.
  • [36] R. Dorf and R. Bishop: Modern control systems, 12th ed. Pearson New International Edition, 2013.
  • [37] R. T. Stefani, B. Shahian, C. J. Savant, and G. H. Hostetter: Design of feedback control systems, 4th ed. Oxford Series in Electrical and Computer Engineering, 2001.
  • [38] C. Freytag: Design of feedback control systems. 2016.
  • [39] H. J. Gao, J. Lam, and C. H.Wang: Model simplification for switched hybrid systems. Systems and Control Letters, 55 (2006), 1015–1021.
  • [40] L. Vu and K. Morgansen: Stability of feedback switched systems with state and switching delays. IEEE Transactions of Automatic Control, 55 (2010), 2385–2390.
  • [41] B. Niu and J. Zhao: Barrier Lyapunov functions for the output tracking control of constrained nonlinear switched systems. Systems and Control Letters, 62 (2013), 963–971.
  • [42] X. Zhao, S. Yin, H. Li, and B. Niu: Switching stabilization for a class of slowly switched systems. IEEE Transactions on Automatic Control, 60 (2015), 221–226.
  • [43] C. A. Desoer: Notes for a second course on linear systems. Van Nostrand Reinhold Notes on System Sciences, New York: Van Nostrand Reinhold Company, 1970.
Uwagi
EN
2. This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the project no. 115E952.
PL
3. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d33e1d7c-355f-440e-bd04-8fdf62daa817
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.