PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Probabilistic principal component analysis-based dimensionality reduction and optimization for arrhythmia classification using ECG signals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrocardiogram (ECG) is an electrical signal that contains data about the state and functions of the heart and can be used to diagnose various types of arrhythmias effectively. The modeling and simulation of ECG under different conditions are significant to understand the function of the cardiovascular system and in the diagnosis of heart diseases. Arrhythmia is a severe peril to the patient recovering from acute myocardial infarction. The reliable detection of arrhythmia is a challenge for a cardiovascular diagnostic system. As a result, a considerable amount of research has focused on the development of algorithms for the accurate diagnosis of arrhythmias. In this paper, a system for the classification of arrhythmia is developed by employing the probabilistic principal component analysis (PPCA) model. Initially, the cluster head is selected for the effective transmission of ECG signals of patients using the adaptive fractional artificial bee colony algorithm, and multipath routing for transmission is selected using the fractional bee BAT algorithm. Features such as wavelet features, Gabor transform, empirical mode decomposition, and linear predictive coding features are extracted from the ECG signal with high dimension (which are reduced using PPCA) and finally given to the proposed classifier called adaptive genetic-bat (AGB) support vector neural network (which is trained using the AGB algorithm) for arrhythmia detection. The experimentation of the proposed system is done based on evaluation metrics, such as the number of alive nodes, normalized network energy, goodput, and accuracy. The proposed method obtained a classification accuracy of 0.9865 and a goodput of 0.0590 and provides a better classification of arrhythmia. The experimental results show that the proposed system is useful for the classification of arrhythmias, with a reasonably high accuracy of 0.9865 and a goodput of 0.0590. The validation of the proposed system offers acceptable results for clinical implementation.
Rocznik
Strony
art. no. 20180037
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • REVA University , Bangalore, Karnataka 560064, India
  • MIT College of Engineering, Pune, Maharashtra 411038, India
  • REVA University , Bangalore, Karnataka 560064, India
Bibliografia
  • [1] Solteiro Pires EJ, Tenreiro Machado JA, de Moura Oliveira PB, Boaventura Cunha J, Mendes L. Particle swarm optimization with fractionalorder velocity. Nonlinear Dyn 2010;61:295-301.
  • [2] Ferrone V, Carlucci M, Palumbo P, Carlucci G. Bioanalytical method development for quantification of ulifloxacin, fenbufen and felbinac in rat plasma by solid-phase extraction (SPE) and HPLC with PDA detection. J Pharmaceut Biomed Anal 2016;123:205-12.
  • [3] Mohanty P, Kabat MR. Energy efficient reliable multi-path data transmission in WSN for healthcare application. Int J Wireless Inf Netw 2016;23:162-72.
  • [4] Kumar R, Kumar D, Kumar D. EACO and FABC to multi-path data transmission in wireless sensor networks. IET Commun 2017;11:522-30.
  • [5] Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000;101:215-20.
  • [6] Homaeinezhad MR, Tavakkoli E, Ghaffari A. Discrete wavelet-based fuzzy network architecture for ECG rhythm-type recognition: feature extraction and clustering oriented tuning of fuzzy inference system. Int J Signal Process Image Process Pattern Recogn 2011;4.
  • [7] Chen S, Hua W, Li Z, Li J, Gao X. Heartbeat classification using projected and dynamic features of ECG signal. Biomed Signal Process Control 2017;31:165-73.
  • [8] Chang RCH, Chen HL, Lin CH, Lin KH. Design of a low-complexity real-time arrhythmia detection system. J Signal Process Syst 2017:1-12.
  • [9] Di Furia M, Della Penna A, Salvatorelli A, Clementi M, Guadagni S. A single thyroid nodule revealing early metastases from clear cell renal carcinoma: case report and review of literature. Int J Surg Case Rep 2017;34:96-9.
  • [10] Kaya Y, Pehlivan H. Classification of premature ventricular contraction in ECG. Int J Adv Comput Sci Appl 2015;6:34-40.
  • [11] Kaya Y, Pehlivan H, Tenekeci ME. Effective ECG beat classification using higher order statistic features and genetic feature selection. Biomed Res. 2017;28(17):7594-7603.
  • [12] Kaya Y, Pehlivan H. Comparison of classification algorithms in classification of ECG beats by time series. In: Proceedings of 23rd IEEE Signal Processing and Communications Applications Conference (SIU). Piscataway, New Jersey: IEEE; 2015:407-10.
  • [13] Kaya Y, Pehlivan H. Feature selection using genetic algorithms for premature ventricular contraction classification. In: Proceedings of 9th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey; Piscataway, New Jersey: IEEE; 2015:1229-32.
  • [14] Kaya Y. Classification of PVC beat in ECG using basic temporal features. Balkan J Electr Comput Eng 2018;6:10-4.
  • [15] Karaboga D, Okdem S, Ozturk C. Cluster based wireless sensor network routings using artificial bee colony algorithm. In: Proceedings of the International Conference on Autonomous and Intelligent Systems (AIS), Povoa de Varzim, Portugal; Piscataway, New Jersey, United States: IEEE; 2010:1-5.
  • [16] Gutiérrez-Gnecchi JA, Morfin-Magaña R, Lorias-Espinoza D, del Carmen Tellez-Anguiano A, Reyes-Archundia E, Méndez-Patiño A, Castañeda-Miranda R. DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomed Signal Process Control 2017;32:44-56.
  • [17] Rajagopal R, Ranganathan V. Evaluation of effect of unsupervised dimensionality reduction techniques on automated arrhythmia classi- fication. Biomed Signal Process Control 2017;34:1-8.
  • [18] Jovic A, Jovic F. Classification of cardiac arrhythmias based on alphabet entropy of heart rate variability time series, Biomed Signal Process Control 2017;31:217-30.
  • [19] Mitra M, Samanta RK. Cardiac arrhythmia classification using neural networks with selected features. Procedia Technol 2013;10:76-84.
  • [20] Jung WH, Lee SG. An arrhythmia classification method in utilizing the weighted KNN and the fitness rule. IRBM 2017;38:138-48.
  • [21] Afkhami RG, Azarnia G, Tinati MA. Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recogn Lett 2016;70:45-51.
  • [22] Elhaj FA, Salim N, Harris AR, Swee TT, Ahmed T. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput Methods Programs Biomed 2016;127:52-63.
  • [23] Arvanaghi R, Daneshvar S, Seyedarabi H, Goshvarpour A. Fusion of ECG and ABP signals based on wavelet transform for cardiac arrhythmias classification. Comput Methods Programs Biomed 2017;151:71-8.
  • [24] Kaur H, Rajni R. On the detection of cardiac arrhythmia with principal component analysis. Wireless Personal Commun 2017;97:5495-509.
  • [25] Naseri E, Ghaffari A, Abdollahzade M. A novel ICA-based clustering algorithm for heart arrhythmia diagnosis. Pattern Anal Appl 2017:1-13.
  • [26] Qurraie SS, Afkhami RG. ECG arrhythmia classification using time frequency distribution techniques. Biomed Eng Lett 2017;7:325-32.
  • [27] Zuo WM, Lu WG, Wang KQ, Zhang H. Diagnosis of cardiac arrhythmia using kernel difference weighted KNN classifier. In: 2008 Computers in Cardiology, Bologna: IEEE; 2008:253-6.
  • [28] Haldar NAH, Khan FA, Ali A, Abbas H. Arrhythmia classification using Mahalanobis distance based improved fuzzy C-means clustering for mobile health monitoring systems. Neurocomputing 2017;220:221-35.
  • [29] Karlekar NP, Gomathi N. Kronecker product and bat algorithm-based coefficient generation for privacy protection on cloud. Int J Model Simul Sci Comput. 2017;8(3).
  • [30] Menaga D, Revathi S. Least lion optimization algorithm (LLOA) based secret key generation for privacy preserving association rule hiding. IET Inf Security. 2018;12:332-40.
  • [31] Ranjan NM, Prasad RS. LFNN: lion fuzzy neural network-based evolutionary model for text classification using context and sense based features. Appl Soft Comput. 2018;71:994-1008.
  • [32] Thomas R, Rangachar MJS. Integrating GWTM and BAT algorithm for face recognition in low-resolution images. Imaging Sci J 2016;64:441-52.
  • [33] Kohli N, Verma NK, Roy A. SVM based methods for arrhythmia classification. International Conference on Computer and Communication Technology (ICCCT), Allahabad, Uttar Pradesh, India; Piscataway, New Jersey, United States: IEEE; 2010;486-90.
  • [34] O’Shaughnessy D. Linear predictive coding. IEEE Potentials 1988;7:29-32.
  • [35] Tipping ME, Bishop CM. Probabilistic principal component analysis. J R Stat Soc Ser B Stat Methodol 1999;61:611-22.
  • [36] Li P, Wang Y, He J, Wang L, Tian Y, Zhou T-S, Li T, Li J-s. High-performance personalized heartbeat classification model for long-term ECG signal. IEEE Trans Biomed Eng 2017;64:78-86.
  • [37] Huang S, Zhang Y, Liu Z. Image feature extraction and analysis based on empirical mode decomposition. In: IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China; Piscataway, New Jersey: IEEE; 2016.
  • [38] Chen Z, Luo J, Lin K, Wu J, Zhu T, Xiang X, Meng J. An energy-efficient ECG processor with weak-strong hybrid classifier for arrhythmia detection. J Latex Class Files. 2017;65:948-52.
  • [39] Cheng P, Dong X. Life-threatening ventricular arrhythmia detection with personalized features. IEEE Access 2017;5:14195-203.
  • [40] Haldar NAH, Farrukh Aslam Khan FA, Ali A, Abbas H. Arrhythmia classification using Mahalanobis distance based improved fuzzy Cmeans clustering for mobile health monitoring systems. Neurocomputing 2017;220:221-35.
  • [41] Plawiak P. Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system. Expert Syst Appl 2018;92:334-49.
  • [42] Plawiak P. Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals. Swarm Evol Comput 2018;39:192-208.
  • [43] Yildirim O, Plawiak P, Tan R-S, Rajendra Acharya U. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput Biol Med 2018;102:411-20.
  • [44] Karimui RY, Azadi S. Cardiac arrhythmia classification using the phase space sorted by Poincare sections. Biocybernet Biomed Eng 2017;37:690-700.
  • [45] Nguyen AT, Nguyen PN, Van TV. Building an automatic arrhythmia detection software based on MATLAB. In: International Conference on the Development of Biomedical Engineering in Vietnam. Singapore: Springer, 2017:597-602.
  • [46] Padeletti L, Bagliani G. General introduction, classification, and electrocardiographic diagnosis of cardiac arrhythmias. Cardiac Electrophysiol Clinics 2017;9:345-63.
  • [47] Moody GB, Mark RG. The impact of the MIT-BIH Arrhythmia Database. IEEE Eng Med Biol Mag 2001;20:45-50.
  • [48] Yang X-S. A new metaheuristic BAT-inspired algorithm, Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Stud Comput Intell 2010;284:65-74.
  • [49] Khan S, Anwar SM, Abbas W, Qureshi R. A novel adaptive algorithm for removal of power line interference from ECG signal. Sci Int 2016;28:139-43.
  • [50] Pal S, Mitra M. Detection of ECG characteristic points using multiresolution wavelet analysis based selective coefficient method. Measurement 2010;43:255-61.
  • [51] Li H, Yuan D, Ma X, Cao L. Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci Rep 2017;7.
  • [52] Yang J, Xu M, Zhao W, Xu B. A multipath routing protocol based on clustering and ant colony optimization for wireless sensor networks. Sensors 2010;10:4521-40.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d33c2c18-1e40-4834-918a-b464989ae42b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.