Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Present paper deals with the development of geopolymer foam prepared from ground F class power station fly ash. The effect of the fly ash fineness on the rheology of the geopolymer paste and the foam properties have been investigated. The raw fly ash was ground in a ball mill for various duration, 5, 10, 20, 30, 60 and 120 min. Geopolymer paste was prepared from the raw and ground fly ash with NaOH – sodium silicate mixture as alkaline activator. Geopolymer foam production was made using H2O2 as foaming agent. Additionally, the geopolymer material structure was investigated by Fourier transform infrared spectrometer, the foam cell structure was monitored using optical microscopy. The rheological behaviour of the geopolymer paste changed due to the grinding of fly ash (from Bingham plastic to Newtonian liquid). Grinding of fly ash has a significant effect on the physical properties as well as on the cell structure of the geopolymer foam.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1257--1261
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Institute of Raw Material Preparation and Environmental Processing, University of Miskolc, 3515 Miskolc, Hungary
autor
- Institute of Raw Material Preparation and Environmental Processing, University of Miskolc, 3515 Miskolc, Hungary
autor
- MTA-ME Materials Science Research Group, University of Miskolc, 3515 Miskolc, Hungary
autor
- Institute of Raw Material Preparation and Environmental Processing, University of Miskolc, 3515 Miskolc, Hungary
Bibliografia
- [1] V. Vaou, D. Panias, Miner. Eng. 23 (14), 1146-1151 (2010).
- [2] J. Davidovits, Geopolymer chemistry and application, Saint-Quentin France, 2011
- [3] J. Davidovits, J. Materials Education 16, 91-138 (1994).
- [4] G. Mucsi, J. Lakatos, Z. Molnár, R. Szabó, in D. Cygas, T. Tollazzi (Ed.), Paper 39, Vilnius Gediminas Technical University Press, Vilnius (2014).
- [5] K. Komintsas, D. Zaharaki, Mineral Engineering 20, 1261-1277 (2007).
- [6] Z. Abdollahnejad, F. Pacheco-Torgal, T. Félix, W. Tahri, J. Barroso Aguiar, Construction and Building Materials 80, 18-30 (2015).
- [7] P. Hlaváček, V. Šmilauer, F. Škvára, L. Kopecký, R. Šulc, Journal of the European Ceramic Society 35(2), 703-709 (2015).
- [8] W.D.A. Rickard, A. van Riessen, Cement and Concrete Composites 48, 75-82 (2014).
- [9] J.G. Sanjayan, A. Nazari, L. Chen, G.H. Nguyen, Construction and Building Materials 79, 236-244 (2015).
- [10] V. Ducman, L. Korat, Materials characterization 113, 207-213 (2016).
- [11] M.S. Cilla, P. Colombo, M.R. Morelli, Ceramics International 40, 5723-5730 (2014).
- [12] D. Panias, I.P. Giannopoulou, T. Perraki, Colloids and Surfaces A. 301, 246-54 (2007).
- [13] W.K.W. Lee, J.S.J. van Deventer, Colloids and Surfaces A. 211, 49-66 (2002).
- [14] S. Kumar, R. Kumar, Ceramics International 37, 533-541 (2011).
- [15] G. Mucsi, Á. Szenczi, Z. Molnár, J. Lakatos, Environmental Engineering and Landscape Management 24(1), 48-59 (2016).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d32d13e8-3ffb-463a-aa19-042077594765