PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural characterization of high strength high conductivity Cu-Nb microcomposite wires

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The properties and the microstructure of cold drown Cu-Nb composites have been investigated for their potential use as conductors in high field magnets. Nowadays, there is much activity in the development of such conductors all over the world. Design/methodology/approach: This study was aimed to investigate microstructure, mechanical and electrical properties of Cu-Nb15 wires. The investigated materials have been processed by vacuum furnace melting and casting, further hot forging and cold drawing. Alternatively material has been processed by one of the SPD (severe plastic deformation) method using oscillatory turning die pressing. Microstructure has been observed by optical and electron microscopy technics. Findings: The ultimate tensile strength versus cold deformation degree have been presented. These changes have been discussed in relation to the microstructure evolution. Practical implications: The obtained mechanical and electrical properties (UTS over 900 MPa and electrical conductivity over 40 MS/m) correspond to requirements for production of long pulsed 60T magnets. Originality/value: Original SPD technic applied for Cu-Nb microcomposite deformation cause initial microstructure refinement and improves effectiveness of wire production process.
Rocznik
Strony
40--48
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Non-Ferrous Metals Institute, ul. Sowińskiego 5, 44-100 Gliwice, Poland
  • Non-Ferrous Metals Institute, ul. Sowińskiego 5, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Non-Ferrous Metals Institute, ul. Sowińskiego 5, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Non-Ferrous Metals Institute, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] S. Bednarek, Project of system for non-destructive production of high magnetic fields by explosive methods, Physica B: Condensed Matter 293 (2000) 67-74.
  • [2] K. Han, J. Embury, The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors, Materials Science and Engineering A 267 (1999) 99-114.
  • [3] J. Embury, K. Han, Conductor materials for high magnetic fields, Solid State and Materials Science 3 (1998) 304-308.
  • [4] E. Botcharova, J. Freudenberger, A. Gaganov, K. Khlopkov, L. Schultz, Novel Cu-Nb wires: Processing and characterization, Materials Science and Engineering A 416 (2006) 261-268.
  • [5] J. Liu, L. Meng, Y. Zeng, Microstructure evolution and properties of Cu-Ag microcompositeswith different Ag content, Materials Science and Engineering A 435-436 (2006) 237-244.
  • [6] F. Heringhaus, D. Raabe, G. Gottstein, On the correlation of microstructure and electromagnetic properties of heavily cold worked Cu-20wt% Nb wires, Acta Metallurgica Materiala 43/4 (1995) 1467-1476.
  • [7] L. Murr, R. Flores, Defects and failure in ultra-fine copper magnet wire, Scripta Materialia 39/4/5 (1998) 527-532.
  • [8] J. Stobrawa, Z. Rdzawski, W. Głuchowski, Structure and properties of dispersion hardened submicron grained copper, Journal of Achievements in Materials and Manufacturing Engineering 20 ( 2007) 195-198.
  • [9] J. Stobrawa, Z. Rdzawski, W. Głuchowski, Microstructure and properties of nanocrystalline copper - yttriamicrocomposite, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 83-86.
  • [10] J. Stobrawa, Z. Rdzawski, Deformation behavior of dispersion hardened nanocrystalline copper, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 153-156.
  • [11] J. Stobrawa, Z. Rdzawski, Dispersion - strengthened nanocrystalline copper, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 35-42.
  • [12] Z. Rdzawski, J. Stobrawa, W. Głuchowski, Structure and properties of CuFe2 alloy, Journal of Achievements in Materials and Manufacturing Engineering 33/ 1 (2009) 7-18.
  • [13] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Ultrafine grained strip od CuCr0,6 alloy prepared by CRCS metod, Journal of Achievements in Materials and Manufacturing Engineering 33/2 (2009) 166-172
  • [14] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Microstructure and properties of CuNi2Si1 alloy processed by continuous RCS method, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 466479.
  • [15] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Microstructure evolution in CRCS processed strips of CuCr0,6 alloy, Journal of Achievements in Materials and Manufacturing Engineering 38 /2 (2010) 195-202.
  • [16] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Ultrafine grained strips of precipitation hardened copper alloys, Archives of Metallurgy and Materials 56/1 (2011).
  • [17] W. Głuchowski, Z. Rdzawski, Silver - mishmetal alloy for application at elevated temperature, Journal of Achievements in Materials and Manufacturing Engineering 26/2 (2008) 123-126.
  • [18] W. Głuchowski, Z. Rdzawski, Thermal stability of properties in silver-rare earth metals alloys, Journal of Achievements in Materials and Manufacturing Engineering 28/2 (2008) 143150.
  • [19] W. Głuchowski, Z. Rdzawski, Stabilization of mechanical properties in silver alloys by addition of Lanthanides, Journal of Achievements in Materials and Manufacturing Engineering 30/2 (2008) 129-134.
  • [20] Y. Sakai, K. Inoue, H. Maeda, New high-strength, high-conductivity Cu-Ag alloy sheets, Acta Metallurgica Materiala 43/4 (1995) 1517-1522.
  • [21] W. Grunberger, M. Heilmaier, L. Schultz, Microstructure and mechanical properties of Cu-Ag microcopmosites for conductor wires in pulsed high-field magnets, Zeitschrift fur Metallkunde 93 (2002) 58-65.
  • [22] H. Okamoto, Journal of Phase Equilibria 12 (1991) 614.
  • [23] M. Hamalainen J. Jaaskelainen, R. Luoma M. Nuotio P. Taskinen O. Teppo CALPHAD 14 (1990) 125.
  • [24] D. Li, M. Robinson, T. Rathz, G. Wiliams, Liquidus temperatures and solofification behavior in the copper-niobium system, Acta Materailia 46/11 (1998) 3849-3855.
  • [25] Y. Leprince-Wang, K. Han Y. Huang , K. Yu-Zhang, Microstructure in Cu-Nbmicrocomposites, Materials Science and Engineering A 351 (2003) 214-223.
  • [26] L. Thilly, M. Veron, O. Ludwig, F. Lecourterier, Deformation mechanism in high strength Cu/Nb nanocomposites, Materials Science and Engineering A 309310 (2001) 510-513.
  • [27] J. Chung J, Song S. Hong, Bundling and drawing processing of Cu-Nbmicrocopmosites with various Nb content, Journal of Matrerials Processing Technology 113 (2001) 604-609.
  • [28] S. Hong M. Hill, Microstructure and conductivity of Cu-Nbmicrocomposites fabricated by the bundling and drawing process, Scripta Materialia 44 (2001) 2509-2515.
  • [29] S. Hong M. Hill Mechanical properties of Cu-Nb microcomposites fabricated by the bundling and drawing process, Scripta Materialia 42 (2000) 737-742.
  • [30] A.Shikov, V. Pantsyrnyj, A. Vorobieva, N. Khlebova, A. Silaev, High strength, high conductivity Cu-Nb based conductors with nanoscaled microstructure, Physica C 354 (2001) 410-414.
  • [31] M.J.R. Sandim C.A.M. dos Santos H.R.Z. Sandim, L. Ghivelder, Influence of the filament morphology on the magnetic properties of a Cu-Nb composite Physica C 408410 (2004) 207-208.
  • [32] M. Dadras D. Morris, Examination of some high-strength, high-conductivity copper alloys for high-temperature applications, Scripta Materialia 38/2 (1998) 199-205.
  • [33] B.Z. Cui, Y. Xin and K. Han, Structure and transport properties of nanolaminate Cu-Nb composite foils by a simple fabrication route, Scripta Materialia 56 (2007) 879882.
  • [34] M. Marques, V. Livramento, J. Correia, A. Almeida, R. Villar, Production of copper-niobium carbide nanocomposite powders via mechanical alloying, Materials Science and Engineering A 399 (2005) 382-386.
  • [35] D. Raabe, U. Hangen, Simulation of the yield strength of wire drawn Cu-based in-situ composites, Computational Materials Science 5 (1996) 195-202.
  • [36] S. Ig Hong, Yield strength of a heavily drawn Cu-20% Nb filamentary microcomposite, Scripta Materialia 39/2 (1998) 1685-1691.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d32c544b-3ea2-420a-bacd-881d01635c26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.