
JAISCR, 2012, Vol. 2, No. 1, pp. 5

LEARNING FROM HETEROGENEOUSLY DISTRIBUTED
DATA SETS USING ARTIFICIAL NEURAL NETWORKS

AND GENETIC ALGORITHMS

Diego Peteiro-Barral1, Bertha Guijarro-Berdiñas1 and Beatriz Pérez-Sánchez2

1Department of Computer Science, University of A Coruña,
Campus de Elviña s/n, 15071, A Coruña, Spain

2 Department of Computer Science, University of A Coruña,
Campus de Elviña s/n, 15071, A Coruña, Spain

Abstract

It is a fact that traditional algorithms cannot look at a very large data set and plausibly find
a good solution with reasonable requirements of computation (memory, time and commu-
nications). In this situation, distributed learning seems to be a promising line of research.
It represents a natural manner for scaling up algorithms inasmuch as an increase of the
amount of data can be compensated by an increase of the number of distributed locations
in which the data is processed. Our contribution in this field is the algorithm Devonet,
based on neural networks and genetic algorithms. It achieves fairly good performance
but several limitations were reported in connection with its degradation in accuracy when
working with heterogeneous data, i.e. the distribution of data is different among the lo-
cations. In this paper, we take into account this heterogeneity in order to propose several
improvements of the algorithm, based on distributing the computation of the genetic algo-
rithm. Results show a significative improvement of the performance of Devonet in terms
of accuracy.

1 Introduction

The unrestrainable growth of data in fields such
as bioinformatics, intrusion detection in computer
networks, text classification or engineering, opens
the way for new applications of machine learning.
Traditional algorithms cannot look at a large data
set and plausibly find a good solution on a reason-
able time. They can deal with medium-size data
sets but they usually have problems with more than
1,000,000 data [1], data being features times sam-
ples. Even so most of them are restricted to much
less data due to time of memory constraints. In this
case, preprocessing techniques as subsampling are
usually applied.

However, this is not a constraint for learning
from large data sets but a limitation of learning al-
gorithms. What is more, the larger the number of

samples for training the better the performance of
classifiers [2].

In order to deal with large data sets, a new field
of research has emerged, called large-scale learn-
ing [3, 4]. The aim is to develop efficient and scal-
able algorithms with regard to their requirements of
computation, memory, time and communications.
Large-scale learning has received considerable at-
tention in recent years and some methods have been
proposed so far in the literature [5, 6, 7, 8, 9, 10, 11].

In particular, distributed learning seems to be
one of the most promising lines of research. It in-
volves learning from subsets of data allocated at
physically separated locations and then combining
all knowledge. It represents a natural manner for
scaling up algorithms inasmuch as an increase of
the amount of data can be compensated by an in-

 – 20

6 D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

crease of the number of locations. In this manner,
there is no need of learning on a large data sets but
learning on smaller data sets and then combining all
models.

The fact that machine learning applications are
most often distributed means that traditional algo-
rithms are becoming obsolete. They need a mono-
lithic data set so the only solution is to gather all
data at a single location. However, this is usually
inefficient. On the one hand, the cost of storing a
single data set is much higher than the sum of the
costs of storing smaller parts of it. On the other
hand, the necessary bandwidth to transmit the data
might not be available [12]. Furthermore, some
constraints may prevent exchanging private data at
all. Additionally, the current trend of reducing the
speed of processors in favor of multi-core proces-
sors and computer clusters leads to an appropriate
situation in which distributed learning may play a
central role [13, 14, 15, 16, 17].

Our contribution in the field of distributed learn-
ing is the algorithm Devonet [18], an abbreviation
of Distributed evolved networks. Devonet is a fast
and accurate distributed learning algorithm based
on one-layer artificial neural networks (ANNs) and
genetic algorithms (GA). It makes possible privacy-
preserving classification by not exchanging raw
data across distributed locations but only the ANNs.
Furthermore, it minimizes communications by us-
ing this approach since the size of the ANNs is
negligible in comparison with the size of the raw
data. Devonet performs better than other algorithms
in several data sets [18] but some limitations were
reported when the distributions of data are hetero-
geneous, i.e. the prevalence of classes is different
among the locations. In this regard, real-world dis-
tributed data sets are usually heterogeneous, e.g.
data related to diseases from hospitals around the
world or attacks from an intrusion detection per-
spective. With the aim of overcoming this issue, in
this paper we take into account this heterogeneity in
order to propose several improvements of the algo-
rithm, based on distributing the computation of the
genetic algorithm. Moreover, another contribution
of this paper is the assessment of the algorithms in
terms of different degrees of heterogeneity.

The remainder of the paper is structured as fol-
lows. Section 2 presents the distributed learning al-
gorithm Devonet, Section 3 describes its improve-

ments proposed in this paper, Section 4 describes
the experimental study, Sections 5 and 6 discuss
the experimental results, and Section 7 presents the
conclusions of this research.

2 Devonet

In a formal way, we can define a distributed
computing environment as a set of locations physi-
cally separated but mutually connected by a com-
munication network, including in this definition
multi-core processors. In order to learn from dis-
tributed data, one of the most promising strategies
is local learning and model integration, i.e. in the
first place, the classifiers are trained on their corre-
sponding, local, subset of data and then they are in-
tegrated using some combination method. Devonet
takes advantage of this learning paradigm avoiding
moving raw data across the locations and therefore
allows privacy-preserving classification as well as
minimizing communications, as described below.

2.1 Local Learning

As local classifiers, Devonet uses one-layer
ANNs trained with an efficient learning algorithm
[19]. It is well known that, when working with
large data sets, it is essential to employ low com-
plexity algorithms due to time and memory restric-
tions. This training algorithm presents some advan-
tages which make it suitable for our purposes on
distributed learning. On the one hand, it is very ef-
ficient since the weights of the ANNs are computed
analytically and, on the other hand, it is able to learn
in an incremental manner.

Figure 1. Architecture of a single-layer ANN

Assume that the one-layer ANN shown in Fig-
ure 1 in which the set of equations relating inputs

D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

crease of the number of locations. In this manner,
there is no need of learning on a large data sets but
learning on smaller data sets and then combining all
models.

The fact that machine learning applications are
most often distributed means that traditional algo-
rithms are becoming obsolete. They need a mono-
lithic data set so the only solution is to gather all
data at a single location. However, this is usually
inefficient. On the one hand, the cost of storing a
single data set is much higher than the sum of the
costs of storing smaller parts of it. On the other
hand, the necessary bandwidth to transmit the data
might not be available [12]. Furthermore, some
constraints may prevent exchanging private data at
all. Additionally, the current trend of reducing the
speed of processors in favor of multi-core proces-
sors and computer clusters leads to an appropriate
situation in which distributed learning may play a
central role [13, 14, 15, 16, 17].

Our contribution in the field of distributed learn-
ing is the algorithm Devonet [18], an abbreviation
of Distributed evolved networks. Devonet is a fast
and accurate distributed learning algorithm based
on one-layer artificial neural networks (ANNs) and
genetic algorithms (GA). It makes possible privacy-
preserving classification by not exchanging raw
data across distributed locations but only the ANNs.
Furthermore, it minimizes communications by us-
ing this approach since the size of the ANNs is
negligible in comparison with the size of the raw
data. Devonet performs better than other algorithms
in several data sets [18] but some limitations were
reported when the distributions of data are hetero-
geneous, i.e. the prevalence of classes is different
among the locations. In this regard, real-world dis-
tributed data sets are usually heterogeneous, e.g.
data related to diseases from hospitals around the
world or attacks from an intrusion detection per-
spective. With the aim of overcoming this issue, in
this paper we take into account this heterogeneity in
order to propose several improvements of the algo-
rithm, based on distributing the computation of the
genetic algorithm. Moreover, another contribution
of this paper is the assessment of the algorithms in
terms of different degrees of heterogeneity.

The remainder of the paper is structured as fol-
lows. Section 2 presents the distributed learning al-
gorithm Devonet, Section 3 describes its improve-

ments proposed in this paper, Section 4 describes
the experimental study, Sections 5 and 6 discuss
the experimental results, and Section 7 presents the
conclusions of this research.

2 Devonet

In a formal way, we can define a distributed
computing environment as a set of locations physi-
cally separated but mutually connected by a com-
munication network, including in this definition
multi-core processors. In order to learn from dis-
tributed data, one of the most promising strategies
is local learning and model integration, i.e. in the
first place, the classifiers are trained on their corre-
sponding, local, subset of data and then they are in-
tegrated using some combination method. Devonet
takes advantage of this learning paradigm avoiding
moving raw data across the locations and therefore
allows privacy-preserving classification as well as
minimizing communications, as described below.

2.1 Local Learning

As local classifiers, Devonet uses one-layer
ANNs trained with an efficient learning algorithm
[19]. It is well known that, when working with
large data sets, it is essential to employ low com-
plexity algorithms due to time and memory restric-
tions. This training algorithm presents some advan-
tages which make it suitable for our purposes on
distributed learning. On the one hand, it is very ef-
ficient since the weights of the ANNs are computed
analytically and, on the other hand, it is able to learn
in an incremental manner.

Figure 1. Architecture of a single-layer ANN

Assume that the one-layer ANN shown in Fig-
ure 1 in which the set of equations relating inputs

D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

crease of the number of locations. In this manner,
there is no need of learning on a large data sets but
learning on smaller data sets and then combining all
models.

The fact that machine learning applications are
most often distributed means that traditional algo-
rithms are becoming obsolete. They need a mono-
lithic data set so the only solution is to gather all
data at a single location. However, this is usually
inefficient. On the one hand, the cost of storing a
single data set is much higher than the sum of the
costs of storing smaller parts of it. On the other
hand, the necessary bandwidth to transmit the data
might not be available [12]. Furthermore, some
constraints may prevent exchanging private data at
all. Additionally, the current trend of reducing the
speed of processors in favor of multi-core proces-
sors and computer clusters leads to an appropriate
situation in which distributed learning may play a
central role [13, 14, 15, 16, 17].

Our contribution in the field of distributed learn-
ing is the algorithm Devonet [18], an abbreviation
of Distributed evolved networks. Devonet is a fast
and accurate distributed learning algorithm based
on one-layer artificial neural networks (ANNs) and
genetic algorithms (GA). It makes possible privacy-
preserving classification by not exchanging raw
data across distributed locations but only the ANNs.
Furthermore, it minimizes communications by us-
ing this approach since the size of the ANNs is
negligible in comparison with the size of the raw
data. Devonet performs better than other algorithms
in several data sets [18] but some limitations were
reported when the distributions of data are hetero-
geneous, i.e. the prevalence of classes is different
among the locations. In this regard, real-world dis-
tributed data sets are usually heterogeneous, e.g.
data related to diseases from hospitals around the
world or attacks from an intrusion detection per-
spective. With the aim of overcoming this issue, in
this paper we take into account this heterogeneity in
order to propose several improvements of the algo-
rithm, based on distributing the computation of the
genetic algorithm. Moreover, another contribution
of this paper is the assessment of the algorithms in
terms of different degrees of heterogeneity.

The remainder of the paper is structured as fol-
lows. Section 2 presents the distributed learning al-
gorithm Devonet, Section 3 describes its improve-

ments proposed in this paper, Section 4 describes
the experimental study, Sections 5 and 6 discuss
the experimental results, and Section 7 presents the
conclusions of this research.

2 Devonet

In a formal way, we can define a distributed
computing environment as a set of locations physi-
cally separated but mutually connected by a com-
munication network, including in this definition
multi-core processors. In order to learn from dis-
tributed data, one of the most promising strategies
is local learning and model integration, i.e. in the
first place, the classifiers are trained on their corre-
sponding, local, subset of data and then they are in-
tegrated using some combination method. Devonet
takes advantage of this learning paradigm avoiding
moving raw data across the locations and therefore
allows privacy-preserving classification as well as
minimizing communications, as described below.

2.1 Local Learning

As local classifiers, Devonet uses one-layer
ANNs trained with an efficient learning algorithm
[19]. It is well known that, when working with
large data sets, it is essential to employ low com-
plexity algorithms due to time and memory restric-
tions. This training algorithm presents some advan-
tages which make it suitable for our purposes on
distributed learning. On the one hand, it is very ef-
ficient since the weights of the ANNs are computed
analytically and, on the other hand, it is able to learn
in an incremental manner.

Figure 1. Architecture of a single-layer ANN

Assume that the one-layer ANN shown in Fig-
ure 1 in which the set of equations relating inputs

w10

+

+

+

x0S

x1S

xIS

f1

f2

fJ

z1S

z2S

zJS

y1S

y2S

yIS

w20
wJ0

w11

w21

wJ1

w1I w2I

wJI

...

...

LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

and outputs is given by

y js = f j

(
I

∑
i=0

w ji · xis

)
; j = 1 . . .J;s = 1 . . .S (1)

where I,J,S are the number of inputs, outputs and
training samples, respectively; x0s = 1; w ji is the
weight of the connection between the ith input and
the jth output neuron; and f j is the nonlinear ac-
tivation function of jth output neuron. The system
described by Eq. 1 has J×S equations in J×(I+1)
unknowns. However, due to the situation that the
number of samples of data is often larger than the
number of inputs (S >> I +1) , in practice this set
of equations in w ji is not compatible and has no so-
lution. Consequently, some errors ε js between the
real output, y js, and the desired output, d js, of the
ANN have to be considered,

ε js = d js − y js = d js − f j

(
I

∑
i=0

w ji · xis

)
(2)

In order to learn the weights w ji, the sum of squared
errors is usually employed as the objective function
to be minimized,

P =
S

∑
s=1

J

∑
j=1

ε2
js =

S

∑
s=1

J

∑
j=1

(
d js − f j

(
I

∑
i=0

w ji · xis

))2

(3)
Assuming that the nonlinear activation functions f j

are invertible (as it is the case for the most com-
monly used functions), alternatively, the system of
equations in Eq. 2 can be rewritten in the following
way [19]

ε̄ js = d̄ js − z js = f−1
j (d js)−

I

∑
i=0

w ji · xis (4)

Notice that in Eq. 4, as opposed to Eq. 3, the un-
knowns, representing the weights of the ANN, are
not affected by the nonlinear activation functions f j,
Thus, we can define a new error objective function
as [20]

Q =
S

∑
s=1

J

∑
j=1

(ε̄ js)
2 =

=
S

∑
s=1

J

∑
j=1

(
f−1

j (d js)−
I

∑
i=0

w ji · xis

)2

(5)

whose global minimum can be computed by deriv-
ing it with respect to the weights,

∂Q
∂w jp

=−2 ·Q · xps; p = 1 . . . I

(6)

and solving the system of equations obtained by
equalizing its derivative function to zero,

I

∑
i=0

Api ·w ji = bp j (7)

where

Api =
S

∑
s=1

xis · xps

bp j =
S

∑
s=1

d̄ js · xps

(8)

For every output j, Eq. 8 has I +1 linear equations
and unknowns so there exists only one real solution
which corresponds to the global optimum of the ob-
jective function in Eq. 5. Several computationally
efficient methods can be used to solve these kinds
of systems with a complexity of O(J × (I + 1)2)
[21, 22]. Moreover, this training algorithm is able
to learn incrementally since the coefficients Api and
bp j are calculated as a sum of terms in Eq. 8 on the
number of samples S. Due to the commutative and
associative properties of the sum, the same solution
is obtained independently of the order of occurrence
of the samples.

2.2 Model Integration

The weights of a single, global, ANN represent-
ing the union of all, local, ANNs may be computed
by summing their corresponding matrices of coef-
ficients A and b (see Fig. 2), solving the new sys-
tem of linear equations. Notice that even when the
knowledge of an ANN is contained in its weight
matrix W it can be computed from the coefficients
A and b (see Eq. 7). However, this method may
be very sensitive to data skewness since the train-
ing algorithm achieves the global optimum for each
subset of data. For this reason, Devonet computes
a global ANN using a GA. Basically, the GA is de-
fined by the next three elements in which the initial
population corresponds to the set of local classifiers,
ANNs, represented by the matrices of coefficients A
and b.

7LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

and outputs is given by

y js = f j

(
I

∑
i=0

w ji · xis

)
; j = 1 . . .J;s = 1 . . .S (1)

where I,J,S are the number of inputs, outputs and
training samples, respectively; x0s = 1; w ji is the
weight of the connection between the ith input and
the jth output neuron; and f j is the nonlinear ac-
tivation function of jth output neuron. The system
described by Eq. 1 has J×S equations in J×(I+1)
unknowns. However, due to the situation that the
number of samples of data is often larger than the
number of inputs (S >> I +1) , in practice this set
of equations in w ji is not compatible and has no so-
lution. Consequently, some errors ε js between the
real output, y js, and the desired output, d js, of the
ANN have to be considered,

ε js = d js − y js = d js − f j

(
I

∑
i=0

w ji · xis

)
(2)

In order to learn the weights w ji, the sum of squared
errors is usually employed as the objective function
to be minimized,

P =
S

∑
s=1

J

∑
j=1

ε2
js =

S

∑
s=1

J

∑
j=1

(
d js − f j

(
I

∑
i=0

w ji · xis

))2

(3)
Assuming that the nonlinear activation functions f j

are invertible (as it is the case for the most com-
monly used functions), alternatively, the system of
equations in Eq. 2 can be rewritten in the following
way [19]

ε̄ js = d̄ js − z js = f−1
j (d js)−

I

∑
i=0

w ji · xis (4)

Notice that in Eq. 4, as opposed to Eq. 3, the un-
knowns, representing the weights of the ANN, are
not affected by the nonlinear activation functions f j,
Thus, we can define a new error objective function
as [20]

Q =
S

∑
s=1

J

∑
j=1

(ε̄ js)
2 =

=
S

∑
s=1

J

∑
j=1

(
f−1

j (d js)−
I

∑
i=0

w ji · xis

)2

(5)

whose global minimum can be computed by deriv-
ing it with respect to the weights,

∂Q
∂w jp

=−2 ·Q · xps; p = 1 . . . I

(6)

and solving the system of equations obtained by
equalizing its derivative function to zero,

I

∑
i=0

Api ·w ji = bp j (7)

where

Api =
S

∑
s=1

xis · xps

bp j =
S

∑
s=1

d̄ js · xps

(8)

For every output j, Eq. 8 has I +1 linear equations
and unknowns so there exists only one real solution
which corresponds to the global optimum of the ob-
jective function in Eq. 5. Several computationally
efficient methods can be used to solve these kinds
of systems with a complexity of O(J × (I + 1)2)
[21, 22]. Moreover, this training algorithm is able
to learn incrementally since the coefficients Api and
bp j are calculated as a sum of terms in Eq. 8 on the
number of samples S. Due to the commutative and
associative properties of the sum, the same solution
is obtained independently of the order of occurrence
of the samples.

2.2 Model Integration

The weights of a single, global, ANN represent-
ing the union of all, local, ANNs may be computed
by summing their corresponding matrices of coef-
ficients A and b (see Fig. 2), solving the new sys-
tem of linear equations. Notice that even when the
knowledge of an ANN is contained in its weight
matrix W it can be computed from the coefficients
A and b (see Eq. 7). However, this method may
be very sensitive to data skewness since the train-
ing algorithm achieves the global optimum for each
subset of data. For this reason, Devonet computes
a global ANN using a GA. Basically, the GA is de-
fined by the next three elements in which the initial
population corresponds to the set of local classifiers,
ANNs, represented by the matrices of coefficients A
and b.

LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

and outputs is given by

y js = f j

(
I

∑
i=0

w ji · xis

)
; j = 1 . . .J;s = 1 . . .S (1)

where I,J,S are the number of inputs, outputs and
training samples, respectively; x0s = 1; w ji is the
weight of the connection between the ith input and
the jth output neuron; and f j is the nonlinear ac-
tivation function of jth output neuron. The system
described by Eq. 1 has J×S equations in J×(I+1)
unknowns. However, due to the situation that the
number of samples of data is often larger than the
number of inputs (S >> I +1) , in practice this set
of equations in w ji is not compatible and has no so-
lution. Consequently, some errors ε js between the
real output, y js, and the desired output, d js, of the
ANN have to be considered,

ε js = d js − y js = d js − f j

(
I

∑
i=0

w ji · xis

)
(2)

In order to learn the weights w ji, the sum of squared
errors is usually employed as the objective function
to be minimized,

P =
S

∑
s=1

J

∑
j=1

ε2
js =

S

∑
s=1

J

∑
j=1

(
d js − f j

(
I

∑
i=0

w ji · xis

))2

(3)
Assuming that the nonlinear activation functions f j

are invertible (as it is the case for the most com-
monly used functions), alternatively, the system of
equations in Eq. 2 can be rewritten in the following
way [19]

ε̄ js = d̄ js − z js = f−1
j (d js)−

I

∑
i=0

w ji · xis (4)

Notice that in Eq. 4, as opposed to Eq. 3, the un-
knowns, representing the weights of the ANN, are
not affected by the nonlinear activation functions f j,
Thus, we can define a new error objective function
as [20]

Q =
S

∑
s=1

J

∑
j=1

(ε̄ js)
2 =

=
S

∑
s=1

J

∑
j=1

(
f−1

j (d js)−
I

∑
i=0

w ji · xis

)2

(5)

whose global minimum can be computed by deriv-
ing it with respect to the weights,

∂Q
∂w jp

=−2 ·Q · xps; p = 1 . . . I

(6)

and solving the system of equations obtained by
equalizing its derivative function to zero,

I

∑
i=0

Api ·w ji = bp j (7)

where

Api =
S

∑
s=1

xis · xps

bp j =
S

∑
s=1

d̄ js · xps

(8)

For every output j, Eq. 8 has I +1 linear equations
and unknowns so there exists only one real solution
which corresponds to the global optimum of the ob-
jective function in Eq. 5. Several computationally
efficient methods can be used to solve these kinds
of systems with a complexity of O(J × (I + 1)2)
[21, 22]. Moreover, this training algorithm is able
to learn incrementally since the coefficients Api and
bp j are calculated as a sum of terms in Eq. 8 on the
number of samples S. Due to the commutative and
associative properties of the sum, the same solution
is obtained independently of the order of occurrence
of the samples.

2.2 Model Integration

The weights of a single, global, ANN represent-
ing the union of all, local, ANNs may be computed
by summing their corresponding matrices of coef-
ficients A and b (see Fig. 2), solving the new sys-
tem of linear equations. Notice that even when the
knowledge of an ANN is contained in its weight
matrix W it can be computed from the coefficients
A and b (see Eq. 7). However, this method may
be very sensitive to data skewness since the train-
ing algorithm achieves the global optimum for each
subset of data. For this reason, Devonet computes
a global ANN using a GA. Basically, the GA is de-
fined by the next three elements in which the initial
population corresponds to the set of local classifiers,
ANNs, represented by the matrices of coefficients A
and b.

LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

and outputs is given by

y js = f j

(
I

∑
i=0

w ji · xis

)
; j = 1 . . .J;s = 1 . . .S (1)

where I,J,S are the number of inputs, outputs and
training samples, respectively; x0s = 1; w ji is the
weight of the connection between the ith input and
the jth output neuron; and f j is the nonlinear ac-
tivation function of jth output neuron. The system
described by Eq. 1 has J×S equations in J×(I+1)
unknowns. However, due to the situation that the
number of samples of data is often larger than the
number of inputs (S >> I +1) , in practice this set
of equations in w ji is not compatible and has no so-
lution. Consequently, some errors ε js between the
real output, y js, and the desired output, d js, of the
ANN have to be considered,

ε js = d js − y js = d js − f j

(
I

∑
i=0

w ji · xis

)
(2)

In order to learn the weights w ji, the sum of squared
errors is usually employed as the objective function
to be minimized,

P =
S

∑
s=1

J

∑
j=1

ε2
js =

S

∑
s=1

J

∑
j=1

(
d js − f j

(
I

∑
i=0

w ji · xis

))2

(3)
Assuming that the nonlinear activation functions f j

are invertible (as it is the case for the most com-
monly used functions), alternatively, the system of
equations in Eq. 2 can be rewritten in the following
way [19]

ε̄ js = d̄ js − z js = f−1
j (d js)−

I

∑
i=0

w ji · xis (4)

Notice that in Eq. 4, as opposed to Eq. 3, the un-
knowns, representing the weights of the ANN, are
not affected by the nonlinear activation functions f j,
Thus, we can define a new error objective function
as [20]

Q =
S

∑
s=1

J

∑
j=1

(ε̄ js)
2 =

=
S

∑
s=1

J

∑
j=1

(
f−1

j (d js)−
I

∑
i=0

w ji · xis

)2

(5)

whose global minimum can be computed by deriv-
ing it with respect to the weights,

∂Q
∂w jp

=−2 ·Q · xps; p = 1 . . . I

(6)

and solving the system of equations obtained by
equalizing its derivative function to zero,

I

∑
i=0

Api ·w ji = bp j (7)

where

Api =
S

∑
s=1

xis · xps

bp j =
S

∑
s=1

d̄ js · xps

(8)

For every output j, Eq. 8 has I +1 linear equations
and unknowns so there exists only one real solution
which corresponds to the global optimum of the ob-
jective function in Eq. 5. Several computationally
efficient methods can be used to solve these kinds
of systems with a complexity of O(J × (I + 1)2)
[21, 22]. Moreover, this training algorithm is able
to learn incrementally since the coefficients Api and
bp j are calculated as a sum of terms in Eq. 8 on the
number of samples S. Due to the commutative and
associative properties of the sum, the same solution
is obtained independently of the order of occurrence
of the samples.

2.2 Model Integration

The weights of a single, global, ANN represent-
ing the union of all, local, ANNs may be computed
by summing their corresponding matrices of coef-
ficients A and b (see Fig. 2), solving the new sys-
tem of linear equations. Notice that even when the
knowledge of an ANN is contained in its weight
matrix W it can be computed from the coefficients
A and b (see Eq. 7). However, this method may
be very sensitive to data skewness since the train-
ing algorithm achieves the global optimum for each
subset of data. For this reason, Devonet computes
a global ANN using a GA. Basically, the GA is de-
fined by the next three elements in which the initial
population corresponds to the set of local classifiers,
ANNs, represented by the matrices of coefficients A
and b.

8 D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

Figure 2. Combination of ANNs using the
matrices of coefficients A and b.

– The fitness function defines the optimality of a
solution and it is minimized during the execu-
tion of the algorithm. A solution represents an
individual in the population, i.e. a classifier. In
this case, the standard class accuracy [23] was
used.

– The crossover operator defines how two individ-
uals are combined. Due to the training algorithm
allows incremental learning, it is simply defined
as the sum of the matrices of coefficients A and
b of the parents.

– The mutation operator defines the impact of
small random disturbances in an individual. In
this case, few coefficients of the matrices A and b
are altered with small normally-distributed prob-
ability.

The hypothesis here is that the crossover operator
will find the best combination of local ANNs and
the mutation operator will reduce the effect of data
skewness. In order to do this, the GA is run in a cen-
tral location wherein independent, validation, data
is contained.

Fig. 3 shows the architecture of Devonet. The
training procedure is summarized in Algorithm 0.

Notice that during this process only the classi-
fiers, which have a negligible size in comparison
with the data, are sent across a communication net-
work. In this manner, Devonet is able to learn from
distributed data sets without exchanging any raw,
private, data.

3 The Proposed Method

Devonet shows good performance on many data
sets [18] but some limitations were pointed out re-
garding the two following issues.

– Distributed real-world data sets are usually not
symmetric, i.e. the distributions of data for dif-
ferent locations may not be the same. So, in or-
der to train a proper global classifier the GA has
to be executed on unbiased independent data al-
located in a central location. But the concept
of a central location with unbiased data does not
exists in most real-world applications. We could
select at random any location to play the role of
the central location but, in this case, the quality
of the data is not assured. It could be biased.
Notice that the question is not the computation
itself of the GA but the data used.

– As is common in algorithms that involve learn-
ing in the model integration step, Devonet re-
quires to retain independent data in order to
train the global classifier. But this approach has
two major drawbacks. On the one hand, it de-

D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

Figure 2. Combination of ANNs using the
matrices of coefficients A and b.

– The fitness function defines the optimality of a
solution and it is minimized during the execu-
tion of the algorithm. A solution represents an
individual in the population, i.e. a classifier. In
this case, the standard class accuracy [23] was
used.

– The crossover operator defines how two individ-
uals are combined. Due to the training algorithm
allows incremental learning, it is simply defined
as the sum of the matrices of coefficients A and
b of the parents.

– The mutation operator defines the impact of
small random disturbances in an individual. In
this case, few coefficients of the matrices A and b
are altered with small normally-distributed prob-
ability.

The hypothesis here is that the crossover operator
will find the best combination of local ANNs and
the mutation operator will reduce the effect of data
skewness. In order to do this, the GA is run in a cen-
tral location wherein independent, validation, data
is contained.

Fig. 3 shows the architecture of Devonet. The
training procedure is summarized in Algorithm 0.

Notice that during this process only the classi-
fiers, which have a negligible size in comparison
with the data, are sent across a communication net-
work. In this manner, Devonet is able to learn from
distributed data sets without exchanging any raw,
private, data.

3 The Proposed Method

Devonet shows good performance on many data
sets [18] but some limitations were pointed out re-
garding the two following issues.

– Distributed real-world data sets are usually not
symmetric, i.e. the distributions of data for dif-
ferent locations may not be the same. So, in or-
der to train a proper global classifier the GA has
to be executed on unbiased independent data al-
located in a central location. But the concept
of a central location with unbiased data does not
exists in most real-world applications. We could
select at random any location to play the role of
the central location but, in this case, the quality
of the data is not assured. It could be biased.
Notice that the question is not the computation
itself of the GA but the data used.

– As is common in algorithms that involve learn-
ing in the model integration step, Devonet re-
quires to retain independent data in order to
train the global classifier. But this approach has
two major drawbacks. On the one hand, it de-

A·w = b

A1·w = b1

A= A1+A2+...+AN
b= b1+b2+...+bN

A2·w = b2

AN·w = bN

Da
ta
2

Da
ta
1

Da
ta
N

..
.

Da
ta
N

..
.

Da
ta
2

Da
ta
1

this case, the standard class accuracy [23] was
used.

• The crossover operator defines how two indi-
viduals are combined. Due to the training al-
gorithm allows incremental learning, it is sim-
ply defined as the sum of the matrices of coeffi-
cients A and b of the parents.

• The mutation operator defines the impact of
small random disturbances in an individual. In
this case, few coefficients of the matrices A and
b are altered with small normally-distributed
probability.

The hypothesis here is that the crossover operator
will find the best combination of local ANNs and
the mutation operator will reduce the effect of data
skewness. In order to do this, the GA is run in a cen-
tral location wherein independent, validation, data is
contained.

Fig. 3 shows the architecture of Devonet. The
training procedure is summarized in Algorithm 0.

Algorithm 0 Devonet.
1 For each location, train a local classifier on the

data.
2 Broadcast each local model to the central location.

Remember that each model is represented by ma-
trices A and b.

3 Execute the GA at the central location, using the
data stored in it.

4 For the central location, select the individual with
the best fitness of the population as the global clas-
sifier and broadcast it to all locations. In this man-
ner, we will be able to classify new samples at ev-
ery location.

Notice that during this process only the classifiers,
which have a negligible size in comparison with the
data, are sent across a communication network. In

this manner, Devonet is able to learn from distributed
data sets without exchanging any raw, private, data.

3 The Proposed Method

Devonet shows good performance on many data sets
[18] but some limitations were pointed out regarding
the two following issues.

• Distributed real-world data sets are usually not
symmetric, i.e. the distributions of data for dif-
ferent locations may not be the same. So, in or-
der to train a proper global classifier the GA has
to be executed on unbiased independent data al-
located in a central location. But the concept
of a central location with unbiased data does
not exists in most real-world applications. We
could select at random any location to play the
role of the central location but, in this case, the
quality of the data is not assured. It could be
biased. Notice that the question is not the com-
putation itself of the GA but the data used.

• As is common in algorithms that involve learn-
ing in the model integration step, Devonet re-
quires to retain independent data in order to
train the global classifier. But this approach has
two major drawbacks. On the one hand, it de-
prives the local classifiers of some training data
and, on the other hand, the global classifier is
trained only on a small subsample of all data.

While the size of the data sets is large the necessity
of retaining a subset of data as the validation set is
not a severe issue. However, the presence of a central
location with unbiased data could be the most impor-
tant thing for the good performance of Devonet.

With the aim of overcoming these limitations three
different improvements of Devonet are proposed in

5

D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

Figure 2. Combination of ANNs using the
matrices of coefficients A and b.

– The fitness function defines the optimality of a
solution and it is minimized during the execu-
tion of the algorithm. A solution represents an
individual in the population, i.e. a classifier. In
this case, the standard class accuracy [23] was
used.

– The crossover operator defines how two individ-
uals are combined. Due to the training algorithm
allows incremental learning, it is simply defined
as the sum of the matrices of coefficients A and
b of the parents.

– The mutation operator defines the impact of
small random disturbances in an individual. In
this case, few coefficients of the matrices A and b
are altered with small normally-distributed prob-
ability.

The hypothesis here is that the crossover operator
will find the best combination of local ANNs and
the mutation operator will reduce the effect of data
skewness. In order to do this, the GA is run in a cen-
tral location wherein independent, validation, data
is contained.

Fig. 3 shows the architecture of Devonet. The
training procedure is summarized in Algorithm 0.

Notice that during this process only the classi-
fiers, which have a negligible size in comparison
with the data, are sent across a communication net-
work. In this manner, Devonet is able to learn from
distributed data sets without exchanging any raw,
private, data.

3 The Proposed Method

Devonet shows good performance on many data
sets [18] but some limitations were pointed out re-
garding the two following issues.

– Distributed real-world data sets are usually not
symmetric, i.e. the distributions of data for dif-
ferent locations may not be the same. So, in or-
der to train a proper global classifier the GA has
to be executed on unbiased independent data al-
located in a central location. But the concept
of a central location with unbiased data does not
exists in most real-world applications. We could
select at random any location to play the role of
the central location but, in this case, the quality
of the data is not assured. It could be biased.
Notice that the question is not the computation
itself of the GA but the data used.

– As is common in algorithms that involve learn-
ing in the model integration step, Devonet re-
quires to retain independent data in order to
train the global classifier. But this approach has
two major drawbacks. On the one hand, it de-

9LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

Figure 3. Architecture of Devonet.

prives the local classifiers of some training data
and, on the other hand, the global classifier is
trained only on a small subsample of all data.

While the size of the data sets is large the ne-
cessity of retaining a subset of data as the validation
set is not a severe issue. However, the presence of
a central location with unbiased data could be the
most important thing for the good performance of
Devonet.

With the aim of overcoming these limitations
three different improvements of Devonet are pro-
posed in this paper. Notice that any improvement
of the algorithm must keep the advantages of the
original, that is allowing privacy-preserving classi-
fication and minimizing communication costs.

Improvement 1

It is illustrated in Fig. 4. For purposes of sim-
plicity, this figure as well as figures 5 and 6 show
a scenario with three distributed locations. We be-
lieve that other scenarios with different number of
locations can be easily inferred from them.

This approach overcomes the limitation of the
need of a central location by computing the fitness
function of the GA in a distributed manner. Thus,
each location has its own validation set to compute
part of the fitness function, which will be coalesce
with all other parts at a designated location. We
simply referred to the location chosen to gather all
data and build the global model as the designated

location. Notice that, in our design, any distributed
location can play this role. The hypothesis here is
that subsampling each location to form the valida-
tion data set we will be able to make an unbiased
sample of all data. Algorithm 1 summarizes the
procedure of the algorithm and describes how the
global classifier is obtained.

Improvement 2

This approach overcomes the limitation of re-
taining independent data for training the global

Da
ta
1 Lo

ca
l
1

Da
ta
N Lo

ca
l
N

Da
ta
2Lo

ca
l
2

..
...

.→
Gl
ob
al

Lo
ca
l
1 Lo

ca
l
2

Lo
ca
l
N ..

.

Va
li
d.

1 2

...N

CENTRAL
LOCATION

LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

Figure 3. Architecture of Devonet.

prives the local classifiers of some training data
and, on the other hand, the global classifier is
trained only on a small subsample of all data.

While the size of the data sets is large the ne-
cessity of retaining a subset of data as the validation
set is not a severe issue. However, the presence of
a central location with unbiased data could be the
most important thing for the good performance of
Devonet.

With the aim of overcoming these limitations
three different improvements of Devonet are pro-
posed in this paper. Notice that any improvement
of the algorithm must keep the advantages of the
original, that is allowing privacy-preserving classi-
fication and minimizing communication costs.

Improvement 1

It is illustrated in Fig. 4. For purposes of sim-
plicity, this figure as well as figures 5 and 6 show
a scenario with three distributed locations. We be-
lieve that other scenarios with different number of
locations can be easily inferred from them.

This approach overcomes the limitation of the
need of a central location by computing the fitness
function of the GA in a distributed manner. Thus,
each location has its own validation set to compute
part of the fitness function, which will be coalesce
with all other parts at a designated location. We
simply referred to the location chosen to gather all
data and build the global model as the designated

location. Notice that, in our design, any distributed
location can play this role. The hypothesis here is
that subsampling each location to form the valida-
tion data set we will be able to make an unbiased
sample of all data. Algorithm 1 summarizes the
procedure of the algorithm and describes how the
global classifier is obtained.

Improvement 2

This approach overcomes the limitation of re-
taining independent data for training the global

Algorithm 1 Improvement 1 of Devonet.
1 For each location, divide the data into training and

validation sets. Train a local classifier on the train-
ing data.

2 Broadcast each local classifier to all other loca-
tions, i.e. at the end of this step each location will
contain every local model or, what is the same, the
whole population.

3 Execute the GA at the designated location. Repeat
until convergence (epochs, error. . .),

3.1 For each location, compute the values of the fit-
ness function on the validation set for every in-
dividual of the population and send them to the
designated location.

3.2 For the designated location, evolve the popula-
tion and broadcast to all other locations.

4 For the designated location, select the best indi-
vidual of the population as the global classifier and
broadcast it to all other locations.

The lack of publicly available distributed data sets
is one of the most important issues we have to deal
with. With the aim of overcoming this issue, we de-
velop distributed data sets based on these publicly
available, monolithic, data sets. However, as men-
tioned above, notice that distributed data sets may
show different distributions of data among locations.
In order to take this issue into account, the concept of
class-probability distributions of data is introduced
below.

4.2 Class-Probability Distribution of Data

For a given data set, we can define the class-
probability distribution of that data as the a priori
probability of classifying a sample in each class. In a
less rigorous manner, it is the percentage of samples
per class at each location. If we use this concept in a
distributed context, we can define a uniform, or ho-

Algorithm 2 Improvement 2 of Devonet.
1 For each location, train a local classifier on the

data.
2 Broadcast each local model to all other locations,

i.e. at the end of this step each location will con-
tain every local classifier or, what is the same, the
whole population.

3 For each location, execute the GA on the data us-
ing all classifiers except the local one. Do this
in order to avoid biased classifiers since the local
classifier was trained on that data. Select the best
individual of the population as the partial-global
classifier and broadcast it to the designated loca-
tion.

4 For the designated location, build the global clas-
sifier by combining the partial-global classifiers.
Due to the incremental features of the training al-
gorithms, we are able to combine them by simply
summing their matrices of coefficients. Broadcast
the global classifier to all other locations.

9

10 D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

Figure 4. Architecture of improvement 1 of Devonet.

Figure 5. Architecture of improvement 2 of Devonet.

D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

Figure 4. Architecture of improvement 1 of Devonet.

Figure 5. Architecture of improvement 2 of Devonet.

D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

Figure 4. Architecture of improvement 1 of Devonet.

Figure 5. Architecture of improvement 2 of Devonet.

Va
li
d
1

Tr
ai
n
1

Da
ta
1

Lo
ca
l
1

Lo
ca
l
1 Lo

ca
l
2 Lo

ca
l
3

Va
li
d
2

Tr
ai
n
2

Da
ta
2

Lo
ca
l
2

Lo
ca
l
1Lo

ca
l
2Lo

ca
l
3

Va
li
d
3

Tr
ai
n
3

Da
ta
3

Lo
ca
l
3

Lo
ca
l
1 Lo

ca
l
2 Lo

ca
l
3

→
→

→

Fi
tn
es
s

1

Fi
tn
es
s

2

Fi
tn
es
s

3

Fi
tn
es
s

1

Fi
tn
es
s

2

Fi
tn
es
s

3→
Gl
ob
al

1

2

3

Da
ta
1 → Gl

ob
al

1

Gl
ob
al

→ Gl
ob
al

3

Lo
ca
l
1

Lo
ca
l
2 Lo

ca
l
3

Da
ta
3

Gl
ob
al

1

Gl
ob
al

2 Gl
ob
al

3

Lo
ca
l
3

Lo
ca
l
1 Lo

ca
l
2

→Gl
ob
al

2

Da
ta
2

Lo
ca
l
2

Lo
ca
l
1Lo

ca
l
3

→

1

2

3

11LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

model by following the approach proposed in [16]
(see Fig. 5). The key in this approach is to bring
the concept of partial-global classifiers in the algo-
rithm (see Algorithm 2 for further details). The hy-
pothesis here is that training both local and global
models on more data will improve the performance
of the classifiers.

Improvement 3

This approach merges, up to a point, the two
previous improvements (see Fig. 6). The hypoth-
esis here is that, even when the complexity of the
model is higher than the previous approaches, we
will be able to exploit the strengths of them. Algo-
rithm 3 summarizes the procedure of the algorithm.

4 Experimental Study

The experimentation presented below is fo-
cused on the assessment of the improvements pro-
posed in this paper. With this aim, the best improve-
ment among them, or even the original algorithm if
there is no improvement at all, will be selected in
the first place. After that, the method selected in the
previous step will be compared against other dis-
tributed algorithms. We will also aim attention at
the impact of different distributions of data on the
performance of the algorithms. This is important
due to the inherent data skewness features shown in
most real-world distributed data sets. Indeed, this
fact may cause that the locations perform quite dif-
ferently from one another in terms of accuracy.

D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

Figure 4. Architecture of improvement 1 of Devonet.

Figure 5. Architecture of improvement 2 of Devonet.

Algorithm 1 Improvement 1 of Devonet.
1 For each location, divide the data into training and

validation sets. Train a local classifier on the train-
ing data.

2 Broadcast each local classifier to all other loca-
tions, i.e. at the end of this step each location will
contain every local model or, what is the same, the
whole population.

3 Execute the GA at the designated location. Repeat
until convergence (epochs, error. . .),

3.1 For each location, compute the values of the fit-
ness function on the validation set for every in-
dividual of the population and send them to the
designated location.

3.2 For the designated location, evolve the popula-
tion and broadcast to all other locations.

4 For the designated location, select the best indi-
vidual of the population as the global classifier and
broadcast it to all other locations.

The lack of publicly available distributed data sets
is one of the most important issues we have to deal
with. With the aim of overcoming this issue, we de-
velop distributed data sets based on these publicly
available, monolithic, data sets. However, as men-
tioned above, notice that distributed data sets may
show different distributions of data among locations.
In order to take this issue into account, the concept of
class-probability distributions of data is introduced
below.

4.2 Class-Probability Distribution of Data

For a given data set, we can define the class-
probability distribution of that data as the a priori
probability of classifying a sample in each class. In a
less rigorous manner, it is the percentage of samples
per class at each location. If we use this concept in a
distributed context, we can define a uniform, or ho-

Algorithm 2 Improvement 2 of Devonet.
1 For each location, train a local classifier on the

data.
2 Broadcast each local model to all other locations,

i.e. at the end of this step each location will con-
tain every local classifier or, what is the same, the
whole population.

3 For each location, execute the GA on the data us-
ing all classifiers except the local one. Do this
in order to avoid biased classifiers since the local
classifier was trained on that data. Select the best
individual of the population as the partial-global
classifier and broadcast it to the designated loca-
tion.

4 For the designated location, build the global clas-
sifier by combining the partial-global classifiers.
Due to the incremental features of the training al-
gorithms, we are able to combine them by simply
summing their matrices of coefficients. Broadcast
the global classifier to all other locations.

9

Algorithm 3 Improvement 3 of Devonet.
1 For each location, divide the data into training and

validation. Train a local classifier on the training
data.

2 Broadcast each local classifier to all other loca-
tions, i.e. at the end of this step each location will
contain every local model or, what is the same, the
whole population.

3 For each location, execute the GA on the train-
ing data using all classifiers except the local one.
Do this in order to avoid biased classifiers since
the local classifier was trained on that data. Select
the best individual of the population as the partial-
global classifier and broadcast it to the designated
location.

4 Execute the GA at the designated location using
the partial-global classifiers as initial population.
Repeat until convergence (epochs, error. . .),

4.1 For each location, compute the values of the fit-
ness function on the validation set for every indi-
vidual of the population and send to the designated
location.

4.2 For the designated location, evolve the popula-
tion and broadcast to all locations.

5 For the designated location, select the best indi-
vidual of the population as the global classifier and
broadcast it to all other locations.

mogeneous, distributed data environment as an alike
class-probability distribution for every location, that
is, the prevalence of each class is the same among
the locations. On the other hand, a nonuniform, or
heterogeneous, distributed data environment occurs
when there is an unlike class-probability distribution
for at least two locations. The latter opens the way
for different degrees of heterogeneity.

The heterogeneity is an important factor that af-
fects learning. Therefore, in order to assess the per-
formance of the distributed algorithms in a proper
manner, we simulate several distributions of data
among locations; one uniform and three nonuni-
form. The difference among the nonuniform distri-
butions lies in the degree of heterogeneity, or skew-
ness; slight, quite and severe.

Figure 7 shows the different environments for each
data set considered in this research. The darker the
shading the more nonuniform the distribution. The
range of prevalence of each class in a given envi-
ronment is depicted as a segment bounded by the
minimum and the maximum prevalence of that class
among the locations. Notice that the segments are
continuous and they are shown superimposed. In or-
der to make clear the representation consider Adult
data set. In the uniform distribution of data, lightest
gray, the prevalence of class 1 is around 25% for ev-
ery location. In the opposite case, darkest gray for
severe nonuniform distributions of data, its preva-
lence lies between 0 and 75%, i.e. at least one lo-
cation does not contain any sample of class 1, at
least one location contains 75% of samples of that
class and, finally, all other locations show a preva-
lence of class 1 somewhere between 0 and 75%. The
remaining classes and data sets can be interpreted in
the same manner.

10

12 D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

Figure 6. Architecture of improvement 3 of Devonet.

4.1 Data Sets

Four well-known data sets selected from the
UCI Machine Learning Repository [24] were used.
For each data set, number of inputs, classes and
samples are shown in Table 1. In order to be as
representative as possible of different data sets, we
included binary and multi-class medium-large size
data sets.

Data set Inputs Classes Samples
Adult 14 2 30,162
Connect4 42 3 67,557
Covertype 54 7 581,012
Shuttle 9 7 43,500

Table 1. Characteristics of each data set used
during experimentation.

The lack of publicly available distributed data
sets is one of the most important issues we have
to deal with. With the aim of overcoming this is-
sue, we develop distributed data sets based on these
publicly available, monolithic, data sets. However,
as mentioned above, notice that distributed data sets
may show different distributions of data among lo-
cations. In order to take this issue into account, the
concept of class-probability distributions of data is
introduced below.

4.2 Class-Probability Distribution of Data

For a given data set, we can define the class-
probability distribution of that data as the a priori
probability of classifying a sample in each class.
In a less rigorous manner, it is the percentage of
samples per class at each location. If we use this
concept in a distributed context, we can define a
uniform, or homogeneous, distributed data environ-
ment as an alike class-probability distribution for
every location, that is, the prevalence of each class
is the same among the locations. On the other hand,
a nonuniform, or heterogeneous, distributed data
environment occurs when there is an unlike class-
probability distribution for at least two locations.
The latter opens the way for different degrees of
heterogeneity.

The heterogeneity is an important factor that af-
fects learning. Therefore, in order to assess the per-
formance of the distributed algorithms in a proper
manner, we simulate several distributions of data
among locations; one uniform and three nonuni-
form. The difference among the nonuniform distri-
butions lies in the degree of heterogeneity, or skew-
ness; slight, quite and severe.

Figure 7 shows the different environments for
each data set considered in this research. The darker
the shading the more nonuniform the distribution.

D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

Figure 6. Architecture of improvement 3 of Devonet.

4.1 Data Sets

Four well-known data sets selected from the
UCI Machine Learning Repository [24] were used.
For each data set, number of inputs, classes and
samples are shown in Table 1. In order to be as
representative as possible of different data sets, we
included binary and multi-class medium-large size
data sets.

Data set Inputs Classes Samples
Adult 14 2 30,162
Connect4 42 3 67,557
Covertype 54 7 581,012
Shuttle 9 7 43,500

Table 1. Characteristics of each data set used
during experimentation.

The lack of publicly available distributed data
sets is one of the most important issues we have
to deal with. With the aim of overcoming this is-
sue, we develop distributed data sets based on these
publicly available, monolithic, data sets. However,
as mentioned above, notice that distributed data sets
may show different distributions of data among lo-
cations. In order to take this issue into account, the
concept of class-probability distributions of data is
introduced below.

4.2 Class-Probability Distribution of Data

For a given data set, we can define the class-
probability distribution of that data as the a priori
probability of classifying a sample in each class.
In a less rigorous manner, it is the percentage of
samples per class at each location. If we use this
concept in a distributed context, we can define a
uniform, or homogeneous, distributed data environ-
ment as an alike class-probability distribution for
every location, that is, the prevalence of each class
is the same among the locations. On the other hand,
a nonuniform, or heterogeneous, distributed data
environment occurs when there is an unlike class-
probability distribution for at least two locations.
The latter opens the way for different degrees of
heterogeneity.

The heterogeneity is an important factor that af-
fects learning. Therefore, in order to assess the per-
formance of the distributed algorithms in a proper
manner, we simulate several distributions of data
among locations; one uniform and three nonuni-
form. The difference among the nonuniform distri-
butions lies in the degree of heterogeneity, or skew-
ness; slight, quite and severe.

Figure 7 shows the different environments for
each data set considered in this research. The darker
the shading the more nonuniform the distribution.

LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

Figure 7. Class-probability distributions of data.

The range of prevalence of each class in a given
environment is depicted as a segment bounded by
the minimum and the maximum prevalence of that
class among the locations. Notice that the segments
are continuous and they are shown superimposed.
In order to make clear the representation consider
Adult data set. In the uniform distribution of data,
lightest gray, the prevalence of class 1 is around
25% for every location. In the opposite case, dark-
est gray for severe nonuniform distributions of data,
its prevalence lies between 0 and 75%, i.e. at least
one location does not contain any sample of class
1, at least one location contains 75% of samples
of that class and, finally, all other locations show
a prevalence of class 1 somewhere between 0 and
75%. The remaining classes and data sets can be
interpreted in the same manner.

4.3 Measure of Disparity among Locations

Once the classifiers are trained any location
could receive new samples for classification. Fur-
thermore, those samples should be classified at that
location since usually we can not send raw sam-
ples of data to other locations due to privacy issues.

This is the point for maintaining the global model
at every location. All algorithms used in this re-
search use a global model for classifying new sam-
ples, and this global model is the same for every
location. However, notice that we assume an alike
class-probability distribution between the training
samples and the new samples received for every lo-
cation. Thus if the distribution of data is not ho-
mogeneous the global classifier could perform dif-
ferently at different locations. In order to be able
to quantify how differently each algorithm performs
on each location, we also compute a measure of dis-
parity (disp) by simply averaging all pairwise dif-
ferences in accuracy (acc) among locations,

disp =
N · (N −1)

2

N−1

∑
i=0

N

∑
j=i+1

|acci −acc j| (9)

N being the number of locations. Even when the di-
vergence is not as critical as the class accuracy, we
believe that it is a good measure for having a new
clue of how well a distributed algorithm performs
in different distributions of data. The lower the dis-
parity the better.

Va
li
d
1

Tr
ai
n
1

Da
ta
1

1

2

3

Gl
ob
al

1 Gl
ob
al

2 Gl
ob
al

3 → Fi
tn
es
s

1

Fi
tn
es
s

1

Fi
tn
es
s

2

Fi
tn
es
s

3

Lo
ca
l
1

Lo
ca
l
2 Lo

ca
l
3 → Gl

ob
al

1

Va
li
d
2

Tr
ai
n
2

Da
ta
2

Gl
ob
al

1Gl
ob
al

2Gl
ob
al

3→
Fi
tn
es
s

2

Lo
ca
l
2

Lo
ca
l
1Lo

ca
l
3→Gl

ob
al

2

Va
li
d
3

Tr
ai
n
3

Da
ta
3

Gl
ob
al

1 Gl
ob
al

2 Gl
ob
al

3 → Fi
tn
es
s

3

Lo
ca
l
3

Lo
ca
l
1 Lo

ca
l
2 → Gl

ob
al

3 →
Gl
ob
al

13D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

Figure 6. Architecture of improvement 3 of Devonet.

4.1 Data Sets

Four well-known data sets selected from the
UCI Machine Learning Repository [24] were used.
For each data set, number of inputs, classes and
samples are shown in Table 1. In order to be as
representative as possible of different data sets, we
included binary and multi-class medium-large size
data sets.

Data set Inputs Classes Samples
Adult 14 2 30,162
Connect4 42 3 67,557
Covertype 54 7 581,012
Shuttle 9 7 43,500

Table 1. Characteristics of each data set used
during experimentation.

The lack of publicly available distributed data
sets is one of the most important issues we have
to deal with. With the aim of overcoming this is-
sue, we develop distributed data sets based on these
publicly available, monolithic, data sets. However,
as mentioned above, notice that distributed data sets
may show different distributions of data among lo-
cations. In order to take this issue into account, the
concept of class-probability distributions of data is
introduced below.

4.2 Class-Probability Distribution of Data

For a given data set, we can define the class-
probability distribution of that data as the a priori
probability of classifying a sample in each class.
In a less rigorous manner, it is the percentage of
samples per class at each location. If we use this
concept in a distributed context, we can define a
uniform, or homogeneous, distributed data environ-
ment as an alike class-probability distribution for
every location, that is, the prevalence of each class
is the same among the locations. On the other hand,
a nonuniform, or heterogeneous, distributed data
environment occurs when there is an unlike class-
probability distribution for at least two locations.
The latter opens the way for different degrees of
heterogeneity.

The heterogeneity is an important factor that af-
fects learning. Therefore, in order to assess the per-
formance of the distributed algorithms in a proper
manner, we simulate several distributions of data
among locations; one uniform and three nonuni-
form. The difference among the nonuniform distri-
butions lies in the degree of heterogeneity, or skew-
ness; slight, quite and severe.

Figure 7 shows the different environments for
each data set considered in this research. The darker
the shading the more nonuniform the distribution.

LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

Figure 7. Class-probability distributions of data.

The range of prevalence of each class in a given
environment is depicted as a segment bounded by
the minimum and the maximum prevalence of that
class among the locations. Notice that the segments
are continuous and they are shown superimposed.
In order to make clear the representation consider
Adult data set. In the uniform distribution of data,
lightest gray, the prevalence of class 1 is around
25% for every location. In the opposite case, dark-
est gray for severe nonuniform distributions of data,
its prevalence lies between 0 and 75%, i.e. at least
one location does not contain any sample of class
1, at least one location contains 75% of samples
of that class and, finally, all other locations show
a prevalence of class 1 somewhere between 0 and
75%. The remaining classes and data sets can be
interpreted in the same manner.

4.3 Measure of Disparity among Locations

Once the classifiers are trained any location
could receive new samples for classification. Fur-
thermore, those samples should be classified at that
location since usually we can not send raw sam-
ples of data to other locations due to privacy issues.

This is the point for maintaining the global model
at every location. All algorithms used in this re-
search use a global model for classifying new sam-
ples, and this global model is the same for every
location. However, notice that we assume an alike
class-probability distribution between the training
samples and the new samples received for every lo-
cation. Thus if the distribution of data is not ho-
mogeneous the global classifier could perform dif-
ferently at different locations. In order to be able
to quantify how differently each algorithm performs
on each location, we also compute a measure of dis-
parity (disp) by simply averaging all pairwise dif-
ferences in accuracy (acc) among locations,

disp =
N · (N −1)

2

N−1

∑
i=0

N

∑
j=i+1

|acci −acc j| (9)

N being the number of locations. Even when the di-
vergence is not as critical as the class accuracy, we
believe that it is a good measure for having a new
clue of how well a distributed algorithm performs
in different distributions of data. The lower the dis-
parity the better.

LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

Figure 7. Class-probability distributions of data.

The range of prevalence of each class in a given
environment is depicted as a segment bounded by
the minimum and the maximum prevalence of that
class among the locations. Notice that the segments
are continuous and they are shown superimposed.
In order to make clear the representation consider
Adult data set. In the uniform distribution of data,
lightest gray, the prevalence of class 1 is around
25% for every location. In the opposite case, dark-
est gray for severe nonuniform distributions of data,
its prevalence lies between 0 and 75%, i.e. at least
one location does not contain any sample of class
1, at least one location contains 75% of samples
of that class and, finally, all other locations show
a prevalence of class 1 somewhere between 0 and
75%. The remaining classes and data sets can be
interpreted in the same manner.

4.3 Measure of Disparity among Locations

Once the classifiers are trained any location
could receive new samples for classification. Fur-
thermore, those samples should be classified at that
location since usually we can not send raw sam-
ples of data to other locations due to privacy issues.

This is the point for maintaining the global model
at every location. All algorithms used in this re-
search use a global model for classifying new sam-
ples, and this global model is the same for every
location. However, notice that we assume an alike
class-probability distribution between the training
samples and the new samples received for every lo-
cation. Thus if the distribution of data is not ho-
mogeneous the global classifier could perform dif-
ferently at different locations. In order to be able
to quantify how differently each algorithm performs
on each location, we also compute a measure of dis-
parity (disp) by simply averaging all pairwise dif-
ferences in accuracy (acc) among locations,

disp =
N · (N −1)

2

N−1

∑
i=0

N

∑
j=i+1

|acci −acc j| (9)

N being the number of locations. Even when the di-
vergence is not as critical as the class accuracy, we
believe that it is a good measure for having a new
clue of how well a distributed algorithm performs
in different distributions of data. The lower the dis-
parity the better.

14 D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

4.4 Learning Algorithms

In order to assess the performance of the pro-
posed learning algorithms in comparison with oth-
ers, two of the most popular distributed learning
algorithms were used: Majority Vote and Stack-
ing. Notice that they are independent of the type
of classifiers in contrast to Devonet. In order to
set up a fair comparative, the same classifiers used
in Devonet were used, that are single-layer ANNs
trained with the learning algorithm presented in
Section 2.1. Remember that this algorithm reaches
the global minima of the error function.

Majority Vote

Fixed combining rules are the most straightfor-
ward manner of combining classifiers, in which a
rule is a function defined on the outputs of the clas-
sifiers. Since the rules are defined a priori there is
no need for training in the combination step, i.e. no
validation data set is required. However, notice that
the local classifiers have to be trained in any case.
Majority Vote [25] is probably the most often used
fixed combining rule in practice, in which a sam-
ple is classified as the class with the highest num-
ber of votes among the classifiers. Since no training
is needed in the combination step, the procedure of
this algorithm is very simple (see Algorithm 4).

Stacked Generalization

Stacked Generalization [26], or Stacking, com-
bines classifiers by learning the way that their out-
puts correlates with their true class. Stacking min-
imizes the generalization error by inferring the bi-
ases of the classifiers on an independent set of sam-
ples. Even though Stacking was originally devel-
oped for improving accuracy in an ensemble of
classifiers, it can be easily adapted to a distributed
learning task as described in Algorithm 5 and illus-

trated in Fig. 8.

4.5 Experimental Procedure

A set of 10 distributed locations was used since
a larger number of distributed locations would lead
to too small training sets increasing the risk of over-
fitting [1]. With the aim of assessing the perfor-
mance of the distributed learning algorithms, the
following procedure was performed.

– For each algorithm; repeat I = 100 times

– Divide the data set into N = 10 subsets. In

LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

Figure 8. Architecture of Stacked Generalization.

this manner, each subset of data will repre-
sent a distributed location.

– For each location, divide the data using hold-
out validation, i.e. a subset of samples is cho-
sen at random to form the test set and the
remaining observations are retained as the
training set. 10% of data is used for testing
while 90% are for training. This kind of vali-
dation is suitable because the size of the data
sets is large. Notice that some algorithms
need to use a validation data set. In these
cases, the following distribution was used;
10% test, 10% validation and 80% training.

– Train the distributed model.

– Test the model at each location by comput-
ing the standard class accuracy [23] on the
test data set. Also compute the global test ac-
curacy by averaging the test accuracy among
the locations.

– Compute the mean test accuracy and standard
deviation of each model over the 100 simula-
tions. Compute also the disparity (see Eq. 9)
among locations.

– Apply a Kruskal-Wallis test [27] to check if
there are significant differences among the me-
dians of the models for a level of significance
α = 0.05.

– If there are differences among the medians,
then apply a multiple comparison procedure [28]
to find the simplest model, lowest complexity,

whose error is not significantly different from
the model with the best mean accuracy rate. In
this work, a Tukey’s honestly significant crite-
rion [28] was used as multiple comparison test.

Finally, all experiments were carried out in
MATLAB R© [29].

5 Results and Discussion: Devonet
Versus its Improvements

For purposes of simplicity, the experimental re-
sults are shown as follows. In the first place, a com-
parison among the original Devonet and the three
different improvements proposed in this paper are
presented in this section. In the second place, we
select the best algorithm among them and it is com-
pared against Majority Vote and Stacking in Section
6. Notice that the two alternatives of Stacking for
forming the meta-knowledge level were included.

5.1 Experimental Results

Table 2 shows the mean test accuracies and
standard deviations of the original Devonet algo-
rithm (see Section 2) and the three improvements
proposed in this research (see Section 3). Note that
Improvement is abbreviated as Imprv.

In order to select the best algorithm in terms of
accuracy, the Kruskal-Wallis test was applied.

We believe that the most interesting results for

4.4 Learning Algorithms

In order to assess the performance of the proposed
learning algorithms in comparison with others, two
of the most popular distributed learning algorithms
were used: Majority Vote and Stacking. Notice that
they are independent of the type of classifiers in con-
trast to Devonet. In order to set up a fair compara-
tive, the same classifiers used in Devonet were used,
that are single-layer ANNs trained with the learning
algorithm presented in Section 2.1. Remember that
this algorithm reaches the global minima of the error
function.

Majority Vote

Fixed combining rules are the most straightforward
manner of combining classifiers, in which a rule is
a function defined on the outputs of the classifiers.
Since the rules are defined a priori there is no need
for training in the combination step, i.e. no valida-
tion data set is required. However, notice that the
local classifiers have to be trained in any case. Ma-
jority Vote [25] is probably the most often used fixed
combining rule in practice, in which a sample is clas-
sified as the class with the highest number of votes
among the classifiers. Since no training is needed in
the combination step, the procedure of this algorithm
is very simple (see Algorithm 4).

Algorithm 4 Majority Vote.
1 At each location, train a local classifier on the data.
2 Broadcast each local classifier to all other loca-

tions, i.e. at the end of this step each location will
contain every local model. Remember that we do
this in order to be able to classify new samples at
every location.

Stacked Generalization

Stacked Generalization [26], or Stacking, combines
classifiers by learning the way that their outputs cor-
relates with their true class. Stacking minimizes the
generalization error by inferring the biases of the
classifiers on an independent set of samples. Even
though Stacking was originally developed for im-
proving accuracy in an ensemble of classifiers, it can
be easily adapted to a distributed learning task as de-
scribed in Algorithm 5 and illustrated in Fig. 8.

4.5 Experimental Procedure

A set of 10 distributed locations was used since a
larger number of distributed locations would lead to
too small training sets increasing the risk of overfit-
ting [1]. With the aim of assessing the performance
of the distributed learning algorithms, the following
procedure was performed.

• For each algorithm; repeat I = 100 times

– Divide the data set into N = 10 subsets. In
this manner, each subset of data will rep-
resent a distributed location.

– For each location, divide the data using
holdout validation, i.e. a subset of sam-
ples is chosen at random to form the test
set and the remaining observations are re-
tained as the training set. 10% of data is
used for testing while 90% are for train-
ing. This kind of validation is suitable
because the size of the data sets is large.
Notice that some algorithms need to use
a validation data set. In these cases, the
following distribution was used; 10% test,
10% validation and 80% training.

– Train the distributed model.
– Test the model at each location by com-

puting the standard class accuracy [23] on

12

Algorithm 5 Stacked Generalization.
1 At each location, divide the data into training and

validation. Train a local classifier on the training
data.

2 Broadcast each local classifier to all other loca-
tions, i.e. at the end of this step each location will
contain every local model.

3 At each location, apply all classifiers to its val-
idation set to build a new data set at the meta-
knowledge level that, later on, will be used to train
the global classifier. A sample of this new data set
will be formed by the outputs of the local classi-
fiers, that will act as inputs, or features, for the
global classifier; along with the true class, that
will be the desired output for the global classifier.
Notice that the outputs of the local classifiers can
be categorical or in terms of probabilities. Notice
also that the outputs in terms of probabilities can
be translated to categorical by simply selecting the
class with the highest confidence. Thus, two dif-
ferent approaches can be followed in this step in
order to form the inputs of the new data set at the
meta-knowledge level,

- Use the label of class, categorical outputs, so the
number of features is the number of locations.
Lower complexity but lower level of knowledge.

- Use the probabilities for each class so the number
of features is the number of locations times the
number of classes in the domain. Higher level of
knowledge but higher complexity.

4 Broadcast each meta-knowledge level data set to
the designated location.

5 At the designated location, train a global classifier
on the meta-knowledge level data set.

erogeneity the larger the disparity, this result being
logical for every algorithm. However, the disparity
of Imprv1 is significantly smaller or equal than that
of the others. In view of the above, Imprv1 is chosen
as the best Devonet.

6 Results and Discussion: Devonet
Versus Others

Once the best Devonet was chosen in Section 5, it
is compared against Majority Vote and Stacking in
this section. Remember that Imprv1 was chosen as
the best version of Devonet, and it is referenced as
Devonet-Imprv1.

6.1 Experimental Results

Table 4 shows the mean test accuracies and stan-
dard deviations of Devonet-Imprv1, Majority Vote
and Stacking.

As in the previous section, the statistical assess-
ment of the algorithms is performed on the results
related to severe heterogeneous distributions of data.
A p-value of p < 0.001 was obtained in the Kruskal-
Wallis test so we can reject the null hypothesis for a
level of significance of 0.05. The results of the mul-
tiple comparison test showed that,

• Majority Vote performs significantly worse than
the others for every data set

• Stacking-Class, Stacking-Prob and Devonet-
imprv1 are the best algorithms with no signif-
icant differences on Adult and Connect4 data
sets

• Stacking-Prob is the best algorithm on Cover-
type and Shuttle data sets, followed by Devonet-
imprv1

16

D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

4.4 Learning Algorithms

In order to assess the performance of the pro-
posed learning algorithms in comparison with oth-
ers, two of the most popular distributed learning
algorithms were used: Majority Vote and Stack-
ing. Notice that they are independent of the type
of classifiers in contrast to Devonet. In order to
set up a fair comparative, the same classifiers used
in Devonet were used, that are single-layer ANNs
trained with the learning algorithm presented in
Section 2.1. Remember that this algorithm reaches
the global minima of the error function.

Majority Vote

Fixed combining rules are the most straightfor-
ward manner of combining classifiers, in which a
rule is a function defined on the outputs of the clas-
sifiers. Since the rules are defined a priori there is
no need for training in the combination step, i.e. no
validation data set is required. However, notice that
the local classifiers have to be trained in any case.
Majority Vote [25] is probably the most often used
fixed combining rule in practice, in which a sam-
ple is classified as the class with the highest num-
ber of votes among the classifiers. Since no training
is needed in the combination step, the procedure of
this algorithm is very simple (see Algorithm 4).

Stacked Generalization

Stacked Generalization [26], or Stacking, com-
bines classifiers by learning the way that their out-
puts correlates with their true class. Stacking min-
imizes the generalization error by inferring the bi-
ases of the classifiers on an independent set of sam-
ples. Even though Stacking was originally devel-
oped for improving accuracy in an ensemble of
classifiers, it can be easily adapted to a distributed
learning task as described in Algorithm 5 and illus-

trated in Fig. 8.

4.5 Experimental Procedure

A set of 10 distributed locations was used since
a larger number of distributed locations would lead
to too small training sets increasing the risk of over-
fitting [1]. With the aim of assessing the perfor-
mance of the distributed learning algorithms, the
following procedure was performed.

– For each algorithm; repeat I = 100 times

– Divide the data set into N = 10 subsets. In

15D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

4.4 Learning Algorithms

In order to assess the performance of the pro-
posed learning algorithms in comparison with oth-
ers, two of the most popular distributed learning
algorithms were used: Majority Vote and Stack-
ing. Notice that they are independent of the type
of classifiers in contrast to Devonet. In order to
set up a fair comparative, the same classifiers used
in Devonet were used, that are single-layer ANNs
trained with the learning algorithm presented in
Section 2.1. Remember that this algorithm reaches
the global minima of the error function.

Majority Vote

Fixed combining rules are the most straightfor-
ward manner of combining classifiers, in which a
rule is a function defined on the outputs of the clas-
sifiers. Since the rules are defined a priori there is
no need for training in the combination step, i.e. no
validation data set is required. However, notice that
the local classifiers have to be trained in any case.
Majority Vote [25] is probably the most often used
fixed combining rule in practice, in which a sam-
ple is classified as the class with the highest num-
ber of votes among the classifiers. Since no training
is needed in the combination step, the procedure of
this algorithm is very simple (see Algorithm 4).

Stacked Generalization

Stacked Generalization [26], or Stacking, com-
bines classifiers by learning the way that their out-
puts correlates with their true class. Stacking min-
imizes the generalization error by inferring the bi-
ases of the classifiers on an independent set of sam-
ples. Even though Stacking was originally devel-
oped for improving accuracy in an ensemble of
classifiers, it can be easily adapted to a distributed
learning task as described in Algorithm 5 and illus-

trated in Fig. 8.

4.5 Experimental Procedure

A set of 10 distributed locations was used since
a larger number of distributed locations would lead
to too small training sets increasing the risk of over-
fitting [1]. With the aim of assessing the perfor-
mance of the distributed learning algorithms, the
following procedure was performed.

– For each algorithm; repeat I = 100 times

– Divide the data set into N = 10 subsets. In

LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

Figure 8. Architecture of Stacked Generalization.

this manner, each subset of data will repre-
sent a distributed location.

– For each location, divide the data using hold-
out validation, i.e. a subset of samples is cho-
sen at random to form the test set and the
remaining observations are retained as the
training set. 10% of data is used for testing
while 90% are for training. This kind of vali-
dation is suitable because the size of the data
sets is large. Notice that some algorithms
need to use a validation data set. In these
cases, the following distribution was used;
10% test, 10% validation and 80% training.

– Train the distributed model.

– Test the model at each location by comput-
ing the standard class accuracy [23] on the
test data set. Also compute the global test ac-
curacy by averaging the test accuracy among
the locations.

– Compute the mean test accuracy and standard
deviation of each model over the 100 simula-
tions. Compute also the disparity (see Eq. 9)
among locations.

– Apply a Kruskal-Wallis test [27] to check if
there are significant differences among the me-
dians of the models for a level of significance
α = 0.05.

– If there are differences among the medians,
then apply a multiple comparison procedure [28]
to find the simplest model, lowest complexity,

whose error is not significantly different from
the model with the best mean accuracy rate. In
this work, a Tukey’s honestly significant crite-
rion [28] was used as multiple comparison test.

Finally, all experiments were carried out in
MATLAB R© [29].

5 Results and Discussion: Devonet
Versus its Improvements

For purposes of simplicity, the experimental re-
sults are shown as follows. In the first place, a com-
parison among the original Devonet and the three
different improvements proposed in this paper are
presented in this section. In the second place, we
select the best algorithm among them and it is com-
pared against Majority Vote and Stacking in Section
6. Notice that the two alternatives of Stacking for
forming the meta-knowledge level were included.

5.1 Experimental Results

Table 2 shows the mean test accuracies and
standard deviations of the original Devonet algo-
rithm (see Section 2) and the three improvements
proposed in this research (see Section 3). Note that
Improvement is abbreviated as Imprv.

In order to select the best algorithm in terms of
accuracy, the Kruskal-Wallis test was applied.

We believe that the most interesting results for

LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

Figure 8. Architecture of Stacked Generalization.

this manner, each subset of data will repre-
sent a distributed location.

– For each location, divide the data using hold-
out validation, i.e. a subset of samples is cho-
sen at random to form the test set and the
remaining observations are retained as the
training set. 10% of data is used for testing
while 90% are for training. This kind of vali-
dation is suitable because the size of the data
sets is large. Notice that some algorithms
need to use a validation data set. In these
cases, the following distribution was used;
10% test, 10% validation and 80% training.

– Train the distributed model.

– Test the model at each location by comput-
ing the standard class accuracy [23] on the
test data set. Also compute the global test ac-
curacy by averaging the test accuracy among
the locations.

– Compute the mean test accuracy and standard
deviation of each model over the 100 simula-
tions. Compute also the disparity (see Eq. 9)
among locations.

– Apply a Kruskal-Wallis test [27] to check if
there are significant differences among the me-
dians of the models for a level of significance
α = 0.05.

– If there are differences among the medians,
then apply a multiple comparison procedure [28]
to find the simplest model, lowest complexity,

whose error is not significantly different from
the model with the best mean accuracy rate. In
this work, a Tukey’s honestly significant crite-
rion [28] was used as multiple comparison test.

Finally, all experiments were carried out in
MATLAB R© [29].

5 Results and Discussion: Devonet
Versus its Improvements

For purposes of simplicity, the experimental re-
sults are shown as follows. In the first place, a com-
parison among the original Devonet and the three
different improvements proposed in this paper are
presented in this section. In the second place, we
select the best algorithm among them and it is com-
pared against Majority Vote and Stacking in Section
6. Notice that the two alternatives of Stacking for
forming the meta-knowledge level were included.

5.1 Experimental Results

Table 2 shows the mean test accuracies and
standard deviations of the original Devonet algo-
rithm (see Section 2) and the three improvements
proposed in this research (see Section 3). Note that
Improvement is abbreviated as Imprv.

In order to select the best algorithm in terms of
accuracy, the Kruskal-Wallis test was applied.

We believe that the most interesting results for

Va
li
d
1 Me

ta
1

Tr
ai
n
1

Da
ta
1

Lo
ca
l
1

Lo
ca
l
1 Lo

ca
l
2 Lo

ca
l
3

Va
li
d
2Me

ta
2

Tr
ai
n
2

Da
ta
2

Lo
ca
l
2

Lo
ca
l
1Lo

ca
l
2Lo

ca
l
3

Va
li
d
3 Me

ta
3

Tr
ai
n
3

Da
ta
3

Lo
ca
l
3

Lo
ca
l
1 Lo

ca
l
2 Lo

ca
l
3

→
→

→

→
Gl
ob
al

1

2

3

Me
ta
1

Me
ta
2

Me
ta
3

16 D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

2*DATA SET HETERO- ALGORITHM
GENEITY Devonet Imprv1 Imprv2 Imprv3

4*Adult None 83.59±0.72 83.22±0.94 81.61±2.61 83.43±0.65
Slight 82.35±1.25 83.46±0.61 79.21±5.04 83.30±0.62
Quite 79.06±3.61 83.59±0.86 77.71±7.71 82.86±1.10
Severe 75.92±5.71 83.15±0.76 78.09±7.59 83.34±0.62

4*Connect4 None 75.56±0.50 75.17±0.64 73.82±4.92 75.16±0.52
Slight 74.43±1.83 75.25±0.31 73.89±3.41 75.24±0.64
Quite 71.56±4.09 75.25±0.53 61.77±9.99 75.14±0.52
Severe 68.20±6.29 75.06±0.50 67.90±9.74 74.93±0.55

4*Covertype None 70.24±0.24 70.18±0.20 69.78±1.18 70.33±0.33
Slight 69.34±1.49 70.48±0.30 70.10±0.54 70.59±0.16
Quite 66.67±1.99 70.38±0.24 68.97±1.35 70.09±0.98
Severe 64.75±4.84 69.79±1.02 56.28±9.99 68.68±3.94

4*Shuttle None 90.89±0.98 90.30±1.20 77.06±9.99 94.13±2.06
Slight 89.82±1.23 90.63±1.36 86.48±4.27 90.54±1.63
Quite 89.91±1.94 91.40±1.46 78.33±9.99 92.47±1.64
Severe 88.87±3.57 91.80±0.73 87.46±3.77 90.98±2.53

Table 2. Mean test accuracy (%) and standard deviation of Devonet and its improvements for each data set
and the four class-probability distributions.

the purposes of this research are those computed on
severe heterogeneous distributions of data (see Sec-
tion 4.5) since they show the robustness of the algo-
rithms. Therefore, the statistical assessment of the
algorithms is performed on those results.

A p-value of p < 0.001 was obtained for each
data set so we can reject the null hypothesis, all me-
dians are equal, for a level of significance of 0.05.
Consequently, a multiple comparison test to look
at pairwise comparisons among the algorithms was
applied. Results show that Imprv1 and 3 are the best
algorithms and also they are not significantly differ-
ent from each other. The original Devonet and Im-
prv2 are in any case significantly worse than these
two.

Table 3 shows the disparity among locations.
Remember that it is a measure of how different the
locations perform by averaging all pairwise differ-
ences in accuracy among them.

On the other hand, in order to select the best
algorithm in terms of disparity, the Kruskal-Wallis
test was applied. Remember that the smaller dispar-
ity the better. A p-value of p < 0.001 was obtained
for each data set so we can reject the null hypothesis
for a level of significance of 0.05, i.e. significative
differences were found among the medians of the
models in terms of disparity. A multiple compari-

son test show that Imprv1 is the best algorithm in
terms of disparity, better or not significantly worse
than the others.

5.2 Discussion

As can be inferred from Table 2,

– If we compare the performance of the origi-
nal Devonet between none and severe heteroge-
neous distributions it falls by 7.67, 7.36, 5.49
and 2.02% on Adult, Connect4, Covertype and
Shuttle data sets, respectively. On average, its
performance is 5.64% worse. Notice that the
probability of selecting a biased location to play
the role of the validation set increases with the
heterogeneity of data. Thus, it is logical that the
higher the heterogeneity the lower the accuracy.

– Almost the same performance is reached by Im-
prv1 for every distribution of data. Small vari-
abilities can be explained as the effect of ran-
domness. As can be seen, distributing the com-
putation of the GA works much better than se-
lecting a location by random as happened in the
original Devonet. This improvement is able to
form an unbiased, and distributed, validation set.

– Notice that the performance of Imprv2 is un-
correlated with the distribution of data. In fact,

17D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

2*DATA SET HETERO- ALGORITHM
GENEITY Devonet Imprv1 Imprv2 Imprv3

4*Adult None 83.59±0.72 83.22±0.94 81.61±2.61 83.43±0.65
Slight 82.35±1.25 83.46±0.61 79.21±5.04 83.30±0.62
Quite 79.06±3.61 83.59±0.86 77.71±7.71 82.86±1.10
Severe 75.92±5.71 83.15±0.76 78.09±7.59 83.34±0.62

4*Connect4 None 75.56±0.50 75.17±0.64 73.82±4.92 75.16±0.52
Slight 74.43±1.83 75.25±0.31 73.89±3.41 75.24±0.64
Quite 71.56±4.09 75.25±0.53 61.77±9.99 75.14±0.52
Severe 68.20±6.29 75.06±0.50 67.90±9.74 74.93±0.55

4*Covertype None 70.24±0.24 70.18±0.20 69.78±1.18 70.33±0.33
Slight 69.34±1.49 70.48±0.30 70.10±0.54 70.59±0.16
Quite 66.67±1.99 70.38±0.24 68.97±1.35 70.09±0.98
Severe 64.75±4.84 69.79±1.02 56.28±9.99 68.68±3.94

4*Shuttle None 90.89±0.98 90.30±1.20 77.06±9.99 94.13±2.06
Slight 89.82±1.23 90.63±1.36 86.48±4.27 90.54±1.63
Quite 89.91±1.94 91.40±1.46 78.33±9.99 92.47±1.64
Severe 88.87±3.57 91.80±0.73 87.46±3.77 90.98±2.53

Table 2. Mean test accuracy (%) and standard deviation of Devonet and its improvements for each data set
and the four class-probability distributions.

the purposes of this research are those computed on
severe heterogeneous distributions of data (see Sec-
tion 4.5) since they show the robustness of the algo-
rithms. Therefore, the statistical assessment of the
algorithms is performed on those results.

A p-value of p < 0.001 was obtained for each
data set so we can reject the null hypothesis, all me-
dians are equal, for a level of significance of 0.05.
Consequently, a multiple comparison test to look
at pairwise comparisons among the algorithms was
applied. Results show that Imprv1 and 3 are the best
algorithms and also they are not significantly differ-
ent from each other. The original Devonet and Im-
prv2 are in any case significantly worse than these
two.

Table 3 shows the disparity among locations.
Remember that it is a measure of how different the
locations perform by averaging all pairwise differ-
ences in accuracy among them.

On the other hand, in order to select the best
algorithm in terms of disparity, the Kruskal-Wallis
test was applied. Remember that the smaller dispar-
ity the better. A p-value of p < 0.001 was obtained
for each data set so we can reject the null hypothesis
for a level of significance of 0.05, i.e. significative
differences were found among the medians of the
models in terms of disparity. A multiple compari-

son test show that Imprv1 is the best algorithm in
terms of disparity, better or not significantly worse
than the others.

5.2 Discussion

As can be inferred from Table 2,

– If we compare the performance of the origi-
nal Devonet between none and severe heteroge-
neous distributions it falls by 7.67, 7.36, 5.49
and 2.02% on Adult, Connect4, Covertype and
Shuttle data sets, respectively. On average, its
performance is 5.64% worse. Notice that the
probability of selecting a biased location to play
the role of the validation set increases with the
heterogeneity of data. Thus, it is logical that the
higher the heterogeneity the lower the accuracy.

– Almost the same performance is reached by Im-
prv1 for every distribution of data. Small vari-
abilities can be explained as the effect of ran-
domness. As can be seen, distributing the com-
putation of the GA works much better than se-
lecting a location by random as happened in the
original Devonet. This improvement is able to
form an unbiased, and distributed, validation set.

– Notice that the performance of Imprv2 is un-
correlated with the distribution of data. In fact,

LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

2*DATA SET HETERO- ALGORITHM
GENEITY Devonet Imprv1 Imprv2 Imprv3

4*Adult None 2.35±0.54 2.29±0.32 2.42±0.49 2.14±0.74
Slight 4.39±2.19 5.13±1.37 6.55±3.37 5.10±1.44
Quite 9.11±9.63 8.52±1.78 5.46±2.42 9.79±3.53
Severe 13.04±7.48 8.48±2.73 8.05±6.57 9.71±3.01

4*Connect None 1.89±0.40 1.71±0.38 1.77±0.39 1.63±0.32
Slight 7.05±1.32 8.01±1.55 8.07±2.01 7.55±1.63
Quite 14.19±6.04 11.14±2.60 13.06±5.89 13.71±4.31
Severe 18.78±9.31 12.15±3.79 13.60±6.17 12.22±2.65

4*Covtype None 0.70±0.15 0.56±0.13 0.59±0.12 0.60±0.20
Slight 2.49±0.64 1.84±0.31 1.67±0.47 1.78±0.60
Quite 6.69±1.71 4.30±0.98 4.63±1.42 5.08±1.02
Severe 11.83±6.02 5.40±1.76 11.42±7.99 7.26±4.13

4*Shuttle None 1.50±0.33 1.27±0.44 1.72±0.63 0.97±0.32
Slight 2.57±1.19 2.04±0.91 2.60±1.53 1.62±1.25
Quite 7.28±2.40 4.81±1.31 6.79±1.99 4.63±2.22
Severe 9.38±2.60 8.78±3.23 10.91±4.22 11.18±6.51

Table 3. Disparity (%) among locations of Devonet and its improvements for each data set and
class-probability distribution.

it shows a worse performance than the original
Devonet in many cases. Notice also that the
standard deviation for Imprv2 is much greater
than the others. Even when the local classifiers
were trained on a larger training set, the integra-
tion of biased classifiers by simply summing led
to a biased global classifier.

– Almost the same performance is reached by Im-
prv3 for each distribution of data. The perfor-
mance of Imprv1 and 3 is not significantly dif-
ferent, but the former is much simpler than the
latter.

Finally, regarding the disparity in accuracy of
the algorithms as can be seen Table 3, the higher
the heterogeneity the larger the disparity, this re-
sult being logical for every algorithm. However, the
disparity of Imprv1 is significantly smaller or equal
than that of the others. In view of the above, Imprv1
is chosen as the best Devonet.

6 Results and Discussion: Devonet
Versus Others

Once the best Devonet was chosen in Section 5,
it is compared against Majority Vote and Stacking
in this section. Remember that Imprv1 was chosen

as the best version of Devonet, and it is referenced
as Devonet-Imprv1.

6.1 Experimental Results

Table 4 shows the mean test accuracies and
standard deviations of Devonet-Imprv1, Majority
Vote and Stacking.

As in the previous section, the statistical as-
sessment of the algorithms is performed on the re-
sults related to severe heterogeneous distributions
of data. A p-value of p < 0.001 was obtained in the
Kruskal-Wallis test so we can reject the null hypoth-
esis for a level of significance of 0.05. The results
of the multiple comparison test showed that,

– Majority Vote performs significantly worse than
the others for every data set

– Stacking-Class, Stacking-Prob and Devonet-
imprv1 are the best algorithms with no signifi-
cant differences on Adult and Connect4 data sets

– Stacking-Prob is the best algorithm on Cover-
type and Shuttle data sets, followed by Devonet-
imprv1

Table 5 shows the disparity among locations of
Devonet-Imprv1, Majority Vote and Stacking. In

18 D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

2*DATA SET HETERO- ALGORITHM
GENEITY Devonet-Imprv1 Majority Vote Stacking-Class Stacking-Prob

4*Adult None 83.22±0.94 82.88±0.87 83.06±0.67 83.09±0.73
Slight 83.46±0.61 82.11±3.01 83.28±1.56 83.40±1.91
Quite 83.59±0.86 80.87±3.97 82.91±1.75 83.57±3.92
Severe 83.15±0.76 80.56±3.35 82.72±2.93 83.47±3.16

4*Connect4 None 75.17±0.64 75.11±0.58 75.03±0.61 75.13±3.46
Slight 75.25±0.31 75.23±2.36 75.34±2.27 75.28±0.54
Quite 75.25±0.53 74.33±6.33 75.22±4.10 75.23±3.18
Severe 75.06±0.50 73.44±4.95 74.83±5.75 75.28±1.78

4*Covertype None 70.18±0.20 70.26±0.47 67.29±0.39 71.42±0.42
Slight 70.48±0.30 69.85±0.83 67.87±1.22 71.81±0.46
Quite 70.38±0.24 69.90±1.46 68.45±2.10 72.14±1.47
Severe 69.79±1.02 67.52±3.90 68.21±1.87 71.99±1.29

4*Shuttle None 90.30±1.20 87.12±0.28 88.87±0.63 97.64±0.15
Slight 90.63±1.36 87.54±0.93 88.76±1.39 97.33±0.34
Quite 91.40±1.46 86.33±2.02 88.39±2.08 97.43±0.33
Severe 91.80±0.73 84.75±4.81 88.56±3.62 96.52±1.14

Table 4. Mean test accuracy (%) and standard deviation of Devonet-Imprv1, Majority Vote and Stacking
for each data set and class-probability distribution.

2*DATA SET HETERO- ALGORITHM
GENEITY Devonet-Imprv1 Majority Vote Stacking-Class Stacking-Prob

4*Adult None 2.29±0.32 2.13±0.40 2.05±0.27 2.04±0.61
Slight 5.13±1.37 8.25±2.55 6.02±1.31 7.62±1.04
Quite 8.52±1.78 17.24±6.48 8.04±1.96 10.38±2.07
Severe 8.48±2.73 17.72±5.90 12.02±4.90 10.77±1.80

4*Connect None 1.71±0.38 1.90±0.44 1.61±0.36 1.63±0.45
Slight 8.01±1.55 8.09±2.13 7.44±0.93 8.58±1.81
Quite 11.14±2.60 15.33±2.60 11.59±1.30 11.83±1.99
Severe 12.15±3.79 16.09±5.90 15.31±4.57 12.25±1.27

4*Covtype None 0.56±0.13 1.85±0.49 1.80±0.35 1.90±0.49
Slight 1.84±0.31 2.70±0.69 3.43±1.16 2.44±0.37
Quite 4.30±0.98 5.76±1.66 6.47±1.76 4.38±1.01
Severe 5.40±1.76 10.02±2.03 9.06±2.30 5.50±1.88

4*Shuttle None 1.27±0.44 1.69±0.31 1.94±0.90 0.77±0.30
Slight 2.04±0.91 2.41±1.00 2.70±1.41 0.82±0.22
Quite 4.81±1.31 8.14±2.34 5.38±2.43 1.12±0.58
Severe 8.78±3.23 14.15±3.19 8.62±5.14 2.34±1.56

Table 5. Disparity (%) among locations of Devonet-Imprv1, Majority Vote and Stacking for each data set
and class-probability distribution.

order to select the best algorithm in terms of dis-
parity, the Kruskal-Wallis test was applied. A p-
value of p < 0.001 was obtained for each data set
so we can reject the null hypothesis for a level
of significance of 0.05. A multiple comparison
test shows that only Stacking-Prob outperforms

Devonet-Imprv1 when Shuttle data set are consid-
ered.

6.2 Discussion

As can be inferred from Table 4,

19D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

2*DATA SET HETERO- ALGORITHM
GENEITY Devonet-Imprv1 Majority Vote Stacking-Class Stacking-Prob

4*Adult None 83.22±0.94 82.88±0.87 83.06±0.67 83.09±0.73
Slight 83.46±0.61 82.11±3.01 83.28±1.56 83.40±1.91
Quite 83.59±0.86 80.87±3.97 82.91±1.75 83.57±3.92
Severe 83.15±0.76 80.56±3.35 82.72±2.93 83.47±3.16

4*Connect4 None 75.17±0.64 75.11±0.58 75.03±0.61 75.13±3.46
Slight 75.25±0.31 75.23±2.36 75.34±2.27 75.28±0.54
Quite 75.25±0.53 74.33±6.33 75.22±4.10 75.23±3.18
Severe 75.06±0.50 73.44±4.95 74.83±5.75 75.28±1.78

4*Covertype None 70.18±0.20 70.26±0.47 67.29±0.39 71.42±0.42
Slight 70.48±0.30 69.85±0.83 67.87±1.22 71.81±0.46
Quite 70.38±0.24 69.90±1.46 68.45±2.10 72.14±1.47
Severe 69.79±1.02 67.52±3.90 68.21±1.87 71.99±1.29

4*Shuttle None 90.30±1.20 87.12±0.28 88.87±0.63 97.64±0.15
Slight 90.63±1.36 87.54±0.93 88.76±1.39 97.33±0.34
Quite 91.40±1.46 86.33±2.02 88.39±2.08 97.43±0.33
Severe 91.80±0.73 84.75±4.81 88.56±3.62 96.52±1.14

Table 4. Mean test accuracy (%) and standard deviation of Devonet-Imprv1, Majority Vote and Stacking
for each data set and class-probability distribution.

2*DATA SET HETERO- ALGORITHM
GENEITY Devonet-Imprv1 Majority Vote Stacking-Class Stacking-Prob

4*Adult None 2.29±0.32 2.13±0.40 2.05±0.27 2.04±0.61
Slight 5.13±1.37 8.25±2.55 6.02±1.31 7.62±1.04
Quite 8.52±1.78 17.24±6.48 8.04±1.96 10.38±2.07
Severe 8.48±2.73 17.72±5.90 12.02±4.90 10.77±1.80

4*Connect None 1.71±0.38 1.90±0.44 1.61±0.36 1.63±0.45
Slight 8.01±1.55 8.09±2.13 7.44±0.93 8.58±1.81
Quite 11.14±2.60 15.33±2.60 11.59±1.30 11.83±1.99
Severe 12.15±3.79 16.09±5.90 15.31±4.57 12.25±1.27

4*Covtype None 0.56±0.13 1.85±0.49 1.80±0.35 1.90±0.49
Slight 1.84±0.31 2.70±0.69 3.43±1.16 2.44±0.37
Quite 4.30±0.98 5.76±1.66 6.47±1.76 4.38±1.01
Severe 5.40±1.76 10.02±2.03 9.06±2.30 5.50±1.88

4*Shuttle None 1.27±0.44 1.69±0.31 1.94±0.90 0.77±0.30
Slight 2.04±0.91 2.41±1.00 2.70±1.41 0.82±0.22
Quite 4.81±1.31 8.14±2.34 5.38±2.43 1.12±0.58
Severe 8.78±3.23 14.15±3.19 8.62±5.14 2.34±1.56

Table 5. Disparity (%) among locations of Devonet-Imprv1, Majority Vote and Stacking for each data set
and class-probability distribution.

order to select the best algorithm in terms of dis-
parity, the Kruskal-Wallis test was applied. A p-
value of p < 0.001 was obtained for each data set
so we can reject the null hypothesis for a level
of significance of 0.05. A multiple comparison
test shows that only Stacking-Prob outperforms

Devonet-Imprv1 when Shuttle data set are consid-
ered.

6.2 Discussion

As can be inferred from Table 4,

LEARNING FROM HETEROGENEOUSLY DISTRIBUTED DATA SETS USING . . .

– The impact of the heterogeneity of the distribu-
tion of data on Majority Vote is not negligible.
On average, its performance falls by 2.28% from
homogeneous to severe heterogeneous distribu-
tions. Moreover, statistical tests shows that this
degradation in performance can not be explained
as the effect of randomness.

– In general terms, Stacking-Prob performs bet-
ter than Stacking-Class but at the expense of a
higher complexity in the meta-knowledge level.

– In terms of accuracy, we can say that Devonet-
Imprv1 lies somewhere in between Stacking-
Class and Stacking-Prob.

In summary, we can say that Stacking-Prob per-
forms slightly better than Devonet-Imprv. However,
notice that the complexity of the meta-knowledge
level of Stacking in real-world large-scale data
sets could be an issue. For example, consider-
ing a distributed environment with 100 locations
and 10 classes in the domain places the size of the
meta-knowledge level in 100×10= 1,000 features.
Training a classifier on a data set with 1,000 fea-
tures could be a problem depending on the num-
ber of samples. Moreover, notice that we may also
have to deal with much more complex environments
and domains. On the other hand, Devonet-Imprv1
shows a good scalability due to the GA is com-
puted in a distributed manner. Thus, we believe
that Devonet-Imprv1 is a more suitable algorithm
for real-world problems.

7 Conclusions

In this research, three different improvements
of the distributed learning algorithm Devonet were
proposed in order to overcome several issues of
the original algorithm. With this aim, a distributed
computation of the fitness function of the GA, an
integration method for using all data available for
training, and a combination of both approaches
were followed. Even when we simulated distributed
environments in a single computer, like most papers
in the literature, we took into account inherent is-
sues regarding distributed data which usually do not
drawn the attention of researchers; e.g. data privacy,
communications costs or data skewness. Devonet
allows privacy-preserving classification, since no

raw data is exchanged across locations, as well it
minimizes communications, since only the classi-
fiers which have a negligible size with respect to the
data are exchanged. In this research, we shed light
on the distributions of data across the locations. Up
to the authors’ knowledge, this is a novel approach
in the literature though real-world application usu-
ally have to deal with heterogeneous distributions
of data. In particular, the first improvement shows
the best tradeoff between performance on different
distributions of data and simplicity, while maintain-
ing privacy-preserving classification and reduced
communication costs. Comparisons with other dis-
tributed algorithms show the validity of Devonet, in
particular of its first improvement.

As future work, we plan to extend this research
in several directions, including the assessment of
distributed algorithms in terms of computational
and communication costs or scalability; the assess-
ment of distributed algorithms when new data do
not follow the distribution of the training samples;
or the development of a clustering method wrapped
in Devonet for combining only similar knowledge
in order to build the global classifier. We believe
that the last point will be particularly useful in het-
erogeneous distributions of data in which integrat-
ing all local classifiers with noticeable diversity
knowledge may not be the answer.

Acknowledgements

This work was supported in part by the Span-
ish Ministry of Science and Innovation (MICINN),
Grant code TIN2009-10748, and by the Xunta
de Galicia, projects PGIDT-08TIC012105PR and
CN2011/007, both partially supported by FEDER
funds. Diego Peteiro-Barral acknowledges the sup-
port of Xunta de Galicia under Plan I2C Grant Pro-
gram.

References
[1] F. Provost and V. Kolluri. A survey of methods for

scaling up inductive algorithms. Data mining and
knowledge discovery, 3(2):131–169, 1999.

[2] J. Catlett. Megainduction: machine learning on
very large databases. PhD thesis, School of Com-
puter Science, University of Technology, Sydney,
Australia, 1991.

20 D. Peteiro-Barral, B. Guijarro-Berdi and B. Pérez-Sánchez

[3] L. Bottou and O. Bousquet. The tradeoffs of large
scale learning. Advances in neural information
processing systems, 20:161–168, 2008.

[4] S. Sonnenburg, G. Ratsch, and K. Rieck. Large
scale learning with string kernels. Large Scale Ker-
nel Machines, pages 73–104, 2007.

[5] C. Moretti, K. Steinhaeuser, D. Thain, and N.V.
Chawla. Scaling up classifiers to cloud computers.
In Proceedings of the 8th IEEE International Con-
ference on Data Mining (ICDM), pages 472–481,
2008.

[6] S. Krishnan, C. Bhattacharyya, and R. Hariha-
ran. A randomized algorithm for large scale sup-
port vector learning. In Proceedings of Advances
in Neural Information Processing Systems, pages
793–800, 2008.

[7] R. Raina, A. Madhavan, and A.Y. Ng. Large-scale
deep unsupervised learning using graphics proces-
sors. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, pages
873–880, 2009.

[8] D. Sculley. Large scale learning to rank. In NIPS
2009 Workshop on Advances in Ranking, 2009.

[9] L. Tang, S. Rajan, and V.K. Narayanan. Large scale
multi-label classification via metalabeler. In Pro-
ceedings of the 18th international conference on
World Wide Web, pages 211–220. ACM, 2009.

[10] F.J. Huang and Y. LeCun. Large-scale learning
with svm and convolutional for generic object cate-
gorization. In Computer Vision and Pattern Recog-
nition, 2006 IEEE Computer Society Conference
on, volume 1, pages 284–291. IEEE, 2006.

[11] S. Sonnenburg, G. Ratsch, S. Henschel, C. Wid-
mer, J. Behr, A. Zien, F. de Bona, A. Binder,
C. Gehl, and V. Franc. The SHOGUN Machine
Learning Toolbox. Journal of Machine Learning
Research, 11:1799–1802, 2010.

[12] G. Tsoumakas. Distributed Data Mining. Database
Technologies: Concepts, Methodologies, Tools,
and Applications, pages 157–171, 2009.

[13] P.K. Chan and S.J. Stolfo. Toward parallel and dis-
tributed learning by meta-learning. In AAAI work-
shop in Knowledge Discovery in Databases, pages
227–240, 1993.

[14] W. Davies and P. Edwards. Dagger: A new ap-
proach to combining multiple models learned from
disjoint subsets. Machine Learning, 2000:1–16,
2000.

[15] A. Lazarevic and Z. Obradovic. The distributed
boosting algorithm. In Proceedings of the seventh
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, page 316. ACM,
2001.

[16] G. Tsoumakas and I. Vlahavas. Effective stacking
of distributed classifiers. In ECAI 2002: 15th Euro-
pean Conference on Artificial Intelligence, July 21-
26, 2002, Lyon France: including Prestigious Ap-
plications of Intelligent Systems (PAIS 2002): pro-
ceedings, page 340. Ios Pr Inc, 2002.

[17] N. Chawla, L. Hall, K. Bowyer, T. Moore, and
W. Kegelmeyer. Distributed pasting of small votes.
Multiple Classifier Systems, pages 52–61, 2002.

[18] B. Guijarro-Berdiñas, D. Martı́nez-Rego, and
S. Fernández-Lorenzo. Privacy-Preserving Dis-
tributed Learning Based on Genetic Algorithms
and Artificial Neural Networks. Distributed Com-
puting, Artificial Intelligence, Bioinformatics, Soft
Computing, and Ambient Assisted Living, pages
195–202, 2009.

[19] E. Castillo, O. Fontenla-Romero, B. Guijarro-
Berdiñas, and A. Alonso-Betanzos. A global opti-
mum approach for one-layer neural networks. Neu-
ral Computation, 14(6):1429–1449, 2002.

[20] O. Fontenla-Romero, B. Guijarro-Berdiñas,
B. Pérez-Sánchez, and A. Alonso-Betanzos. A
new convex objective function for the supervised
learning of single-layer neural networks. Pattern
Recognition, 43(5):1984–1992, 2010.

[21] G. Carayannis, N. Kalouptsidis, and D.G.
Manolakis. Fast recursive algorithms for a class of
linear equations. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 30:227–239, 1982.

[22] A. Bojańczyk. Complexity of solving linear sys-
tems in different models of computation. SIAM
Journal on Numerical Analysis, 21(3):591–603,
1984.

[23] S.M. Weiss and C.A. Kulikowski. Computer sys-
tems that learn: classification and prediction meth-
ods from statistics, neural nets, machine learning,
and expert systems. Morgan Kaufmann, San Fran-
cisco, 1991.

[24] A. Frank and A. Asuncion. UCI machine learning
repository, 2010.

[25] J. Kittler. Combining classifiers: A theoreti-
cal framework. Pattern Analysis & Applications,
1(1):18–27, 1998.

[26] D.H. Wolpert. Stacked generalization. Neural net-
works, 5(2):241–259, 1992.

[27] M. Hollander and D.A. Wolfe. Nonparametric sta-
tistical methods. 1999.

[28] J.C. Hsu. Multiple comparisons: theory and meth-
ods. Chapman & Hall/CRC, 1996.

[29] The MathWorks. MATLAB - The
Language Of Technical Computing.
http://www.mathworks.com/products/matlab/,
2010. [Online; accessed 15-August-2010].

