Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
New measurement technologies, e.g. Light Detection And Ranging (LiDAR), generate very large datasets. In many cases, it is reasonable to reduce the number of measuring points, but in such a way that the datasets after reduction satisfy specific optimization criteria. For this purpose the Optimum Dataset (OptD) method proposed in [1] and [2] can be applied. The OptD method with the use of several optimization criteria is called OptD-multi and it gives several acceptable solutions. The paper presents methods of selecting one best solution based on the assumptions of two selected numerical optimization methods: the weighted sum method and the ε-constraint method. The research was carried out on two measurement datasets from Airborne Laser Scanning (ALS) and Mobile Laser Scanning (MLS). The analysis have shown that it is possible to use numerical optimization methods (often used in construction) to obtain the LiDAR data. Both methods gave different results, they are determined by initially adopted assumptions and – in relation to early made findings, these results can be used instead of the original dataset for various studies.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
253--266
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- University of Warmia and Mazury, Faculty of Geodesy, Geospatial and Civil Engineering, M. Oczapowskiego 1/25,10-719 Olsztyn, Poland
autor
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Herzogstandstr 142, 85435 Erding, Germany
Bibliografia
- [1] Błaszczak-Bąk, W. (2016). New Optimum Dataset method in LiDAR processing. Acta Geodynamica et Geomaterialia, 13/4(184), 379-386.
- [2] Błaszczak-Bąk, W., Sobieraj-Żłobińska, A., Kowalik, M. (2017). The OptD-multi method in LiDAR processing. Measurement Science and Technology, 8(7), 075009.
- [3] Bauer-Marschallinger, B., Sabel, D., Wagner, W. (2014). Optimisation of global grids for high-resolution remote sensing data. Computers & Geosciences, 72, 84-93.
- [4] Gościewski, D. (2014). Reduction of deformations of the digital terrain model by merging interpolation algorithms. Computers & Geosciences, 64, 61-71.
- [5] Bakuła, K. (2011). Comparison of six approaches in DTM reduction for flood risk determination. Challenges of Modern Technology, WUT PhD Students Board, 2(4), 31-36.
- [6] Bakuła, K. (2014). The role of the reduction of elevation data obtained from airborne laser scanning in the process of flood hazard map creation. PhD Thesis. Warsaw University of Technology.
- [7] Weiber, R. (1992). Model and experimente for adaptive computer-assisted terrain generalization. Cartograph and Geographic Information System, 19(2).
- [8] Chen, Y. (2012). High performance computing for massive LiDAR data processing with optimized GPU parallel programming. University of Texas at Dallas. Book. Graduate Program in Geospatial Information Science.
- [9] Błaszczak-Bąk, W., Sobieraj-Żłobińska, A., Poniewiera, M., Kowalik, M. (2018). Reduction of measurement data before DTM generation vs. DTM generalization. Survey Review, 1-9.
- [10] Fishburn, P.C. (1967). Additive Utilities with Incomplete Product Set: Applications to Priorities and Assignments. Operations Research Society of America (ORSA), Baltimore, MD, U.S.A.
- [11] Triantaphyllou, E. (2000). Multi-Criteria Decision Making: A Comparative Study. Dordrecht, The Netherlands: Springer, 320.
- [12] Haimes, Y.Y., Lasdon, L.S., Wismer, D.A. (1971). On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE transactions on Systems, Man, and Cybernetics, 1(3), 296-297.
- [13] Hwang, C.L., Masud, A.S., et al. (1979). Multiple Objective Decision Making Methods and Applications. Springer, Berlin.
- [14] Asgharpour, M.J. (1998). Multiple Criteria Decision Making. Tehran University Press, Tehran.
- [15] Deb, K. (2001). Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York, NY.
- [16] Benson, H.P. (1998). An Outer Approximation Algorithm for Generating All Efficient Extreme Points in the Outcome Set of a Multiple Objective Linear Programming Problem. Journal of Global Optimization, 13(1), 1-24.
- [17] Goicoechea, A., Hansen, D.R., Duckstein, L. (1982). Multiobjective Decision Analysis with Engineering and Business Applications. J. Wiley & Sons, New York, 519.
- [18] Zadeh, A. (1963). Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 8, 59-60.
- [19] Marler, R.T., Arora J.S. (2010). The weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization, 41(6), 853-862.
- [20] Douglas, D.H., Peucker, T.K. (1973). Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Canadian Cartographer, 10(1), 112-122.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d32494d7-3848-4db7-93ef-730f5d569887