Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this research, we present a real-world simulation to evaluate the pollution dynamics within a network of three interconnected lakes, facilitated by canals. Using the finite element method (FEM), we handle three input models: linear, periodic, and exponentially decaying. This procedure turns the specified model into an algebraic equations system. By analyzing the residual error function (REF), we can verify the offered technique’s accuracy and efficiency. The numerical outputs are contrasted with that of the fourth-order Runge-Kutta (RK4M). Our results confirm that the presented algorithm is a practical tool to simulate the solution of such models. Key advantages of the supposed approach include simplicity, absence of secular components, and independence from perturbation parameters.
Rocznik
Tom
Strony
5--17
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, Faculty of Science, Islamic University of Madinah, Medina, KSA
autor
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, KSA
- Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt
Bibliografia
- [1] Biazar, J., Shahbala, M., & Ebrahimi, H. (2010). VIM for solving the pollution problem of a system of lakes. Journal of Control Science and Engineering, 10, 1-6.
- [2] Merdan, M. (2009). Homotopy perturbation method for solving modeling the pollution of a system of lakes. Fen Dergisi, 4(1), 99-111.
- [3] Shiri, B., & Baleanu, D. (2022). A general fractional pollution model for lakes. Communications on Applied Mathematics and Computation, 4, 1105-1130.
- [4] Kanwal, T., Hussain, A., Avci, I., Etemad, S., Rezapour, S., & Torres D.F.M. (2024). Dynamics of a model of polluted lakes via fractal-fractional operators with two different numerical algorithms. Chaos, Solitons & Fractals, 181, 114653.
- [5] Bildik, N., & Deniz, S. (2019). A new fractional analysis on the polluted lakes system. Chaos, Solitons & Fractals, 122, 17-24.
- [6] Biazar, J., Farrokhi, L., & Islam, M.R. (2006). Modeling the pollution of a system of lakes. Applied Mathematics and Computation, 178(2), 423-430.
- [7] Khader, M.M., & Adel, M. (2020). Numerical approach for solving the Riccati and logistic equations via QLM-rational Legendre collocation method. Comput. Appl. Math., 39, 1-9.
- [8] Adel, M., Sweilam, N.H., & Khader, M.M. (2024). On the stability analysis for a semi-analytical scheme for solving the fractional order blood ethanol concentration system using LVIM. Journal of Applied Mathematics and Computational Mechanics, 23(1), 7-18.
- [9] Khan, U., Zaib, A., Ishak, A., & Bakar, S.A. (2021). Time-dependent Blasius-Rayleigh-Stokes f lowconveying hybrid nanofluid and heat transfer induced by non-Fourier heat flux and transitive magnetic field. Case Studies in Thermal Engineering, 26, 1-13.
- [10] Khan, U., Zaib, A., Bakar, S.A., Roy, N.C., & Ishak, A. (2021). Buoyancy effect on the stagnation point flow of a hybrid nanofluid toward a vertical plate in a saturated porous medium. Case Studies in Thermal Engineering, 27, 1-17.
- [11] Khan, U., Zaib, A., Ishak, A., Waini, I., Pop, I., Elattar, S., & Abed, A.M. (2023). Stagnation point flow of a water-based graphene-oxide over a stretching/shrinking sheet under an induced magnetic field with a homogeneous-heterogeneous chemical reaction. Journal of Magnetism and Magnetic Materials, 565, 1-15.
- [12] Khader, M.M. (2019). The numerical solution for BVP of the liquid film flow over an unsteady stretching sheet with thermal radiation and magnetic field using the finite element method. International Journal of Modern Physics C, 30(11), 1-8.
- [13] Khader, M.M., & Khadijah, M. Abualnaja, (2019). Galerkin-FEM for obtaining the numerical solution of the linear fractional Klein-Gordon equation. Journal of Applied Analysis and Computation, 9(1), 261-270.
- [14] Kochnev, V.K. (2021). Finite element method for atoms. Chemical Physics, 548(1), 111197.
- [15] Zhang, Q., & Cui, C. (2021). Condensed generalized finite element method. Numerical Methods in Partial Differential Equations, 37, 1847-1868.
- [16] Bertrand, F., Ern, A., & Radu, F.A. (2021). Robust and reliable finite element methods in poromechanics. Computers and Mathematics with Applications, 91(1), 1-21.
- [17] Yuzbas, S., Sahin, N., & Sezer, M. (2012). A collocation approach to solving the model of pollution for a system of lakes. Mathematical and Computer Modelling, 55(3), 330-341.
- [18] John, H. (2006). Lake Pollution Modelling. Virginia Tech.
- [19] Rana, P., &Bhargava, R.(2012). Flow and heat transfer of a nanofluid over a nonlinear stretching sheet: A numerical study. Commun. Nonlinear Sci. Numer. Simulat., 17, 212-226.
- [20] Dong, Y., Tang, X., & Yuan, Y. (2020). Principled reward shaping for reinforcement learning via Lyapunov stability theory. Neurocomputing, 393, 83-90.
- [21] Adel, M., Sweilam, N.H., & Khader, M.M. (2023). Semi-analytical scheme with its stability analysis for solving the fractional-order predator-prey equations by using Laplace-VIM. Journal of Applied Mathematics and Computational Mechanics, 22(4), 5-17.
- [22] Adel, M., & Khader, M.M. (2023). Theoretical and numerical treatment for the fractal-fractional model of pollution for a system of lakes using an efficient numerical technique. Alexandria Engineering Journal, 82(1), 415-425.
- [23] Benhammouda, B., Leal, H.V., & Martinez, L.H. (2014). Modified DTM for solving the model of pollution for a system of lakes. Discrete Dynamics in Nature and Society, 2014, 1-12.
- [24] El-Hawary, H.M., Salim, M.S., & Hussien, H.S. (2003). Ultraspherical integral method for optimal control problems governed by ODEs. Journal of Global Optimization, 25(3), 283-303.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d31c2961-a461-4098-b78c-bfeb837765eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.