PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Shear failure and mechanical behaviors of granite with discontinuous joints under dynamic disturbance: laboratory tests and numerical simulation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To investigate the fracture mechanical behavior and failure mechanism of jointed rock mass under compression and shear load. Conventional shear tests and shear tests under normal disturbances were conducted using an electro-hydraulic servo-motor loading system. Meanwhile, the discrete-element program particle flow code was adopted to establish a numerical shear model, and to discuss the microscopic deterioration characteristics and energy dissipation mechanism during shear fracture of rocks with discontinuous joints under joint action of normal static loads and dynamic disturbance. Compared with the conventional shear tests, shear test results under normal disturbances show the following specificities in terms of their macroscopic and microscopic mechanical properties as well as energy evolution: (1) frequent dynamic disturbances accelerate the non-steady fracture process of jointed rock samples and promote occurrence of the weakening effect of shear fracture. (2) The step-like abrupt increase in micro-cracks becomes more obvious before reaching the peak shear stress. (3) The energy-storage capacity and failure resistance of the rocks are weakened. The research results are of great significance for further understanding the dynamic catastrophe effect of deep rock mass.
Rocznik
Strony
art. no. e171, 2023
Opis fizyczny
Bibliogr. 48 poz., rys., wykr.
Twórcy
autor
  • School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
  • Hubei Key Laboratory of Roadway Bridge and Structure Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
autor
  • Key Laboratory of Geotechnical and Structural Engineering Safety of Hubei Province, School of Civil Engineering, Wuhan University, Wuhan 430070, China
  • Hubei Key Laboratory of Roadway Bridge and Structure Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
  • Hubei Key Laboratory of Roadway Bridge and Structure Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
  • Hubei Key Laboratory of Roadway Bridge and Structure Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
  • Hubei Key Laboratory of Roadway Bridge and Structure Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • Key Laboratory of Geotechnical and Structural Engineering Safety of Hubei Province, School of Civil Engineering, Wuhan University, Wuhan 430070, China
Bibliografia
  • 1. Lu WB, Zhu ZD, He YX, Que XC. Strength characteristics and failure mechanism of a columnar jointed rock mass under uni- axial, triaxial, and true triaxial confinement. Rock Mech Rock Eng. 2021;54(5):2425–39.
  • 2. Yang WD, Li GZ, Ranjith PG, Fang LD. An experimental study of mechanical behavior of brittle rock-like specimens with multi- non-persistent joints under uniaxial compression and damage analysis. Int J Damage Mech. 2019;28(10):1490–522.
  • 3. Kumar S, Tiwari G, Parameswaran V, Das A. Rate-dependent mechanical behavior of jointed rock with an impersistent joint under different infill conditions. J Rock Mech Geotech Eng. 2022;14(5):1380–93.
  • 4. Wang BX, Jin AB, Zhao YQ, Wang H, Sun H, Liu JW, Wei YD. Fracture law of 3D printing specimen with non-consecutive joints based on CT scanning. Rock Soil Mech. 2019;40(10):3920–7.
  • 5. Hwang JH, Kim HT, Kim YJ, Nam HS, Kim JW. Crack tip fields at crack initiation and growth under monotonic and largeamplitude cyclic loading: experimental and FE analyses. Int J Fatigue. 2020;141: 105889.
  • 6. Li XD, Liu KW, Yang JC, Song RT. Numerical study on blast- induced fragmentation in deep rock mass. Int J Impact Eng. 2022;170: 104367.
  • 7. Ding QF, Li B, Su HJ, Xu NW, Li XH, Deng XY. Damage mechanism and stability analysis of rock mass in the high geo- stress tunnel subjected to excavation. Geomat Nat Haz Risk. 2023;13(1):75–93.
  • 8. Qian QH. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump. Rock Soil Mech. 2014;35(01):1–6.
  • 9. Gong HL, Luo Y, Xu K, Huang JH, Wang G, Li XP. Failure behav- iors of fractured granite during loading and unloading under high confining pressure based on acoustic emission multi-parameter analysis. Theor Appl Fract Mech. 2022;121: 103442.
  • 10. Que XC, Zhu ZD, Zhou LM, Niu Z, Huang HN. Strength and failure characteristics of an irregular columnar jointed rock mass under polyaxial stress conditions. Rock Mech Rock Eng. 2022;55(11):7223–42.
  • 11. Yao ZG, Fang Y, Yu T, Pu S, Luo H, Cui J, Wang J. Dynamic failure mechanism of tunnel under rapid unloading in jointed rock- mass: a case study. Eng Fail Anal. 2022;141: 106634.
  • 12. Liu XR, Xu B, Lin GY, Huang JH, Zhou XH, Xie YK, Wang JW, Xiong F. Experimental and numerical investigations on the macro-meso shear mechanical behaviors of artificial rock dis- continuities with multi-scale asperities. Rock Mech Rock Eng. 2021;54(8):4079–98.
  • 13. Zhong Z, Huang D, Zhang YF, Ma GW. Experimental study on the effects of unloading normal stress on shear mechanical behav- ior of sandstone containing a parallel fissure pair. Rock Mech Rock Eng. 2019;53(4):1647–63.
  • 14. Huang D, Zhu TT. Experimental study on the shear mechani- cal behavior of sandstone under normal tensile stress using a new double-shear testing device. Rock Mech Rock Eng. 2019;52(9):3467–74.
  • 15. Mpalaskas AC, Matikas TE, Van Hemelrijck D, Papakitsos GS, Aggelis DG. Acoustic emission monitoring of granite under bend- ing and shear loading. Arch Civil Mech Eng. 2016;16(3):313–24.
  • 16. Xia D, He C, Tang HM, Ge YF, Ma JW, Zhang JR. An efficient approach to determine the shear damage zones of rock joints using photogrammetry. Rock Mech Rock Eng. 2022;55(9):5789–805.
  • 17. Cui GJ, Zhang CQ, Ye JP, Zhou H, Li LY, Zhang LS. Influences of dynamic normal disturbance and initial shear stress on fault activation characteristics. Geomech Geophys Geo-Energy Geo- Resour. 2022;8(5):159.
  • 18. Dang WG, Tao K, Chen XF. Frictional behavior of planar and rough granite fractures subjected to normal load oscillations of dif- ferent amplitudes. J Rock Mech Geotech Eng. 2022;14(3):746–56.
  • 19. Li YQ, Huang D, He J. Energy evolution and damage constitutive model of anchored jointed rock masses under static and fatigue loads. Int J Fatigue. 2023;167: 107313.
  • 20. Liang SM, Feng YT, Zhao TT, Wang ZH. On energy transfer and dissipation of intruder impacting granular materials based on discrete element simulations. Powder Technol. 2023;419: 118347.
  • 21. Gong B, Wang YY, Zhao T, Tang CA, Yang XY, Chen TT. AE energy evolution during CJB fracture affected by rock heteroge- neity and column irregularity under lateral pressure. Geomat Nat Haz Risk. 2022;13(1):877–907.
  • 22. Song LB, Wang G, Wang XK, Huang MZ, Xu K, Han GS, Liu GJ. The influence of joint inclination and opening width on frac- ture characteristics of granite under triaxial compression. Int J Geomech. 2022;22(5):04022031.
  • 23. Ge YF, Tang HM, Wang LQ, Xiong CR, Zhang S, Wang DJ. Strain energy evolution of penetrative rock joints under shear loading. Chin J Rock Mech Eng. 2016;35(06):1111–21.
  • 24. Zhai ML, Guo BH, Li BY, Jiao F. Energy and deformation char- acteristics of rock joints under multi-stage shear loading-creep- unloading conditions. Rock Soil Mech. 2018;39(08):2865–72.
  • 25. Nejati M, Bahrami B, Ayatollahi MR, Driesner T. On the anisot- ropy of shear fracture toughness in rocks. Theor Appl Fract Mech. 2021;113: 102946.
  • 26. Qi SW, Zheng BW, Wu FQ, Huang XL, Guo SF, Zhan ZF, Zou Y, Barla G. A new dynamic direct shear testing device on rock joints. Rock Mech Rock Eng. 2020;53(10):4787–98.
  • 27. Cui GJ, Zhang CQ, Zhou H, Lu JJ, Gao Y, Hu MM, Hu DW. Development and application of multifunctional shear test appa- ratus for rock discontinuity under dynamic disturbance loading. Rock Soil Mech. 2022;43(06):1727–37.
  • 28. Dang WG, Konietzky H, Frühwirt T. Direct shear behavior of a plane joint under dynamic normal load (DNL) conditions. Eng Geol. 2016;213:133–41.
  • 29. Castro-Filgueira U, Alejano LR, Ivars DM. Particle flow code simulation of intact and fissured granitic rock samples. J Rock Mech Geotech Eng. 2020;12(5):960–74.
  • 30. Luo Y, Wang G, Li XP, Liu TT, Mandal AK, Xu MN, Xu K. Analysis of energy dissipation and crack evolution law of sand- stone under impact load. Int J Rock Mech Min Sci. 2020;132(3): 104359.
  • 31. Wang Y, Wu W, Evans TM, Wu HR, Xiao Y. General friction law for velocity-stress dependent phase transition in granular flow. Int J Numer Anal Meth Geomech. 2022;46(8):1525–43.
  • 32. Cao RH, Cao P, Lin H, Ma GW, Zhang CY, Jiang C. Failure characteristics of jointed rock-like material containing multi- joints under a compressive-shear test: experimental and numeri- cal analyses. Arch Civil Mech Eng. 2018;18(3):784–98.
  • 33. Jiang JW, Xiang W, Joachim R, Yao Y. Research on shear strength parameters of structural planes in rock mass based on three-dimensional morphology spatial analysis and simulation tests. Chin J Rock Mech Eng. 2012;31(10):2127–38.
  • 34. Bahaaddini M, Sharrock G, Hebblewhite BK. Numerical direct shear tests to model the shear behavior of rock joints. Comput Geotech. 2013;51(6):101–15.
  • 35. Wang CY, Elsworth D, Fang Y, Zhang FS. Influence of fracture roughness on shear strength, slip stability and permeability: a mechanistic analysis by three-dimensional digital rock mod- eling. J Rock Mech Geotech Eng. 2020;12(4):720–31.
  • 36. Bewick RP, Kaiser PK, Bawden WF. DEM simulation of direct shear: 2. grain boundary and mineral grain strength component influence on shear rupture. Rock Mech Rock Eng. 2014;47(5):1673–92.
  • 37. Zhou YX, Xia KW, Li XH, Li XB, Ma GW, Zhao J, Zhou ZL, Dai F. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci. 2012;49:105–12.
  • 38. Zhang CX, Li DY, Ma JY, Zhu QQ, Luo PK, Chen YD, Han MG. Dynamic shear fracture behavior of rocks: insights from three-dimensional digital image correlation technique. Eng Fract Mech. 2023;277: 109010.
  • 39. Cartwright-Taylor A, Mangriotis MD, Main IG, et al. Seis- mic events miss important kinematically governed grain scale mechanisms during shear failure of porous rock. Nat Commun. 2022;13(1):6169.
  • 40. Wang G, Song LB, Liu XQ, Bao CY, Lin MQ, Liu GJ. Shear fracture mechanical properties and acoustic emission char- acteristics of discontinuous jointed granite. Rock Soil Mech. 2022;43(06):1533–45.
  • 41. Park J, Song J. Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int J Rock Mech Min Sci. 2009;46(8):1315–28.
  • 42. Cho N, Martin CD, Sego DC. A clumped particle model for rock. Int J Rock Mech Min Sci. 2007;44(7):997–1010.
  • 43. Huang Y, Bi YD, Zhang B. Quantifying the impact load of rapid dry granular flows exerted on rigid slit structures using centrifuge experiments and DEM simulation. Comput Geotech. 2022;152: 105059.
  • 44. Zhang B, Huang Y. Impact behavior of superspeed granular flow: Insights from centrifuge modeling and DEM simulation. Eng Geol. 2022;299: 106569.
  • 45. Luo Y, Gong HL, Xu K, Pei CH, Wei XQ, Li XP. Progressive failure characteristics and energy accumulation of granite with a pre-fabricated fracture during conventional triaxial loading. Theor Appl Fract Mech. 2022;118: 103219.
  • 46. Zhang XP, Jiang YY, Wang G, Liu JK, Wang D, Wang CS, Sugimoto S. Mechanism of shear deformation, failure and energy dissipation of artificial rock joint in terms of physical and numerical consideration. Geosci J. 2019;23(3):519–29.
  • 47. Villarreal OR, Valdez AV, La-Borderie C, Pijaudier-Cabot G, Rivera MH. Estimation of fracture energy from hydraulic fracture tests on mortar and rocks at geothermal reservoir temperatures. Rock Mech Rock Eng. 2021;54(8):4111–9.
  • 48. Pijaudier-Cabot G, Hajimohammadi A, Nouailletas O, La- Borderie C, Padin A, Mathieu JP. Determination of the fracture energy of rocks from size effect tests: application to shales and carbonate rocks. Eng Fract Mech. 2022;271: 108630.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d31a79e2-4e48-424a-a3e1-c4ed4aa38b59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.