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BASIC MULTIVARIATE STATISTICAL METHODS
FOR ENVIRONMENTAL MONITORING DATA MINING:
INTRODUCTORY COURSE FOR MASTER STUDENTS

Abstract: The present introductory course of lectures surimesithe principles and algorithms of several widel
used multivariate statistical methods: cluster ysisl principal components analysis, principal congnts
regression, N-way principal components analysistigldeast squares regression and self-organiziags with
respect to their possible application in intelligesmalysis, classification, modelling and interptien to
environmental monitoring data. The target grouppo$sible users is master program students (envantah
chemistry, analytical chemistry, environmental nilialg and risk assessment etc.).
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I ntroduction

The scientific discipline chemometrics has won ghhievel of prestige in the recent
three decades. Although many scientists state tthete is no specific focus of the
chemometrics since it is split between many diffiérields of application among them
analytical chemistry, organic chemistry, theordticand computational chemistry,
environmental chemistry, chemical technology, geoaistry, hydrochemistry etc. Data
analysis is needed everywhere but the approachetaifferent goals of the chemometric
study could be radically different. That is why fdient definitions of the chemometric
strategy and ultimate goals could be found. It ig @onviction that chemometrics
as applied to the problems of the environmentahisiey could be named environmetrics
and its main goals are classification, modellingd a@nterpretation of environmental
monitoring data sets.

In many environmental studies different patterngeht® be determined and interpreted
[1-5] just to mention few out of many examples. hwstance, could monitoring data be
used to classify various sampling sites along ris&ichments? If sets of different sites
come into different patterns, it seems possiblepiimize the number of sampling point in
the monitoring net using the patterns formed asrinftion source for the river water
quality instead of using each one of the sepam@tgpbng points. Is it possible to identify
latent factors responsible for the data structdith® monitoring net consisting of mutually
correlated chemical parameters of the water gialityhe answer is positive, then a model
of the environmental system could be constructddrining on the impact of different
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natural or anthropogenic factors on quality of thgstem. Thus, the tasks for risk
assessment and risk management become more reapplnchble.

Exploratory data analysis (EDA) is based mainly thve multivariate statistical
methods called principal components analysis (P&#) factor analysis (FA). Using these
methods one could visualize a multivariate data teetletect relationships in a reduced
coordinate space both between object of interastzariable characterizing the objects.

Another group of methods are often named unsupsdvimttern recognition. Cluster
analysis is one of the mostly applied from thisugrolts goals are to construct a scheme of
similarities between different features, called dteigram, in which more closely related
objects are closer to each other. The main brancfigbe tree-like scheme represent
deviations from the similarities. Unsupervised gattrecognition differs from exploratory
data analysis in that the aim of the method isatieet similarities whereas using EDA there
no particular insight whether at all or how mangups will be detected. Very often it is
said that the unsupervised pattern recognition ispantaneous classification method
without any preliminary training of the data sefdtlow a specific requirement to classify
the data into a preliminary chosen number of sirtjlayroups.

There are a large number of methods for supervjsaitern recognition, mostly
dedicated to classification problems. The chemdmeairs have created many discriminant
methods where a training set of knowing groupings o be available in advance.
The question then is to find to which preliminaoyrhed class (group) belongs an unknown
sample (object).

Basic environmetric methods

In this lecture some basic principles of the mostgd environmetric methods will be
presented.

Principal components analysis (PCA)

Principal component analysis (PCA) seems to bentbst widespread multivariate
chemometric technique and is a typical display metlfalso known aseigenvector
analysis eigenvector decompositiomr Karhunen-Loéve expansipn6]. It enables
revealing the “hidden” structure of the data seat halps to explain the influence of latent
factors on the data distribution. PCA is done omaciance matrix when the data are
centered or on correlation matrix when the data stamdardized. PCA transforms the
original data matrix into a product of two matricese of which contains the information
about the objects or cases (e.g. sampling sites &amonitoring net) and the other about
the features (e.g. chemical or physicochemical mpaters determining the quality of the
environmental system in concentration units).

If the input data set is represented as a matritaioing m number of rows and
n number of columns the main goal of PCA is to degose the initial data set into matrix
of the score vectors and matrix of the loadinggonsc
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Thus, the matrix characterizing objects contairesgbores (understood as projection)
of objects on principal components (PCs). The otimer, characterizing features is a square
matrix and contains the set of eigenvectors (undedsas weights, in PCA terminology
called “loadings”) of the original features in ed®@. In matrix terms, this can be expressed
as:

X =SOL+ E (1)

whereX is the original data matrix (features as colunmases as rows})is a scores matrix
(has as many rows as the original data mattix$, a loadings matrix (has as many columns
as the original data matrix, is an error matrix.

The number of columns in the mati$equals the number of rows in the matiix
It is possible to calculate scores and loadingsrioest as large as desired, provided the
“common” dimension is no larger than the smallenelision of the original data matrix,
and corresponds to the number of PCs that arelatdcu Each scores matrix consists of
a series of column vectors, and each loadings xnatseries of row vectors. Many authors
use s, and |, notation to express these vectors, wharés the number of the PC.
The matricesSandL are composed of several such vectors, one of@cH he first scores
vector and first loadings vector are often called tigenvectors of the first PC. Each
successive component is characterized by a padigehhvectors. Usinf eigenvectors in
one dimension, wheréis smaller than, or equal to the rank of the datBCs can be
obtained. Usually, a small number of PCs is neddadpresent most of the information in
the data. The minor PCs which explain little of theta structure can be eliminated, thus
simplifying the analysis. Also, these minor PCs ta@m most of the random error, so
eliminating them tends to remove extraneous vdifgbfrom the analysis. In the
ecosystems monitoring studies PCA and related vauitite techniques are often applied to
determine the possible influence and contributibmatural and anthropogenic factors in
data structuring.

The decomposition of the input matrix is achievgdransformation of the major axes
of the correlation matriR. The problem solution with the eigenvectors values

R e = il'el (2)
Re =126 (3)
where:e - eigenvectors), - eigenvalues,
leads to the following determinant:

[R—AIl=0 (4)
Its solution brings couples of eigenvectors an@miglues with following properties:
» the eigenvalues are measure for explanation byidbatified latent factors total
variation (Sim) of the correlation matriR,

» the eigenvalues are ordered in decreasing rank:

A >22> 0 A,
» the sum of all eigenvalues is equal to the numbéheofeatures (variables),
» the eigenvectors are orthogonal to each other,

» the eigenvectors contain the non-normalized cdefits of the factor loadings
matrix A.
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The eigenvalues are normalized by division@y_j. This normalization leads to the

values of the factor loadings in matiix These factor loadings have sense of statistical
weights (they take values within the interval [), dnd indicate the weight of the starting
features in the newly formed latent factor.

The new characteristics (latent factors) do notetate each other and along with the
eigenvalues explain the total variation of the ingiata set. Since

m

>A=m (5)
j=1
the part of the variation explained by facdjtds:
st A
= = (6)
Sotal m

Some important features of PCA could be summariasdfollows. The principal
components axes (the axes of the hidden variabkesprthogonal to each other. Most of
the variance of the data is contained in the fishcipal component. In the second
component there is more information than in thedtline etc. For interpretation of the
projected data both the score and the loading x®&e plotted. In the score plots, the
grouping of objects can be recognized. A loadingt pkeveals the importance of the
individual variables with respect to the principamponent model.

A very important task in PCA is the estimating thember of principal components
necessary for a particular PC model. Several @itexist in determining the number of
components in the PCA model:

(i) percentage of explained variance,

(i) eigenvalue - one criterion (Kaiser criterion),
(iii) Scree - test,

(iv) cross validation.

The percentage of explained variance is appliezkirse of a heuristic criterion. It can
be used if enough experience is gained by analyginglar data sets. If all possible
principal components are used in the model theamad can be explained by 100 %.
Usually, a fixed percentage of explained variarscspiecified, e.g. 80 %. In environmental
studies even 75 % of explained variance is a satisfy measure for the adequateness of
the PCA model chosen.

The eigenvalue - one criterion (Kaiser criteriosbased on the fact that the average
eigenvalue of autoscaled data is just one. Indhi&e only eigenvalues greater than 1 are
considered important.

The Scree - test is based on the phenomena thagglkial variance levels off when
the proper number of principal components is redckésually the residuals or more often
the eigenvalues are plotted against the numberaténi factors in a Scree plot.
The principal component number is then derived fthenleveling-off in the plot.

The forth approach of deciding on the number ofng@pal components uses
the following idea. In the simplest case, every ecbj of the input matrix X
is removed leave-one-out methpdrom the data set once and a model with the neimgi
data is computed. Then the removed data are peedint the use of the PCA model and
the sum of the square root of residuals over atlaeed objects is calculated. In case of
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large data sets, the leave-one-out method canpbecesl by leaving out a whole group of
objects.

Interpretation of the results of PCA is usuallyrizt out by visualization of the
component scores and loadings. In the score pietlinear projection of objects is found,
representing the main part of the total variancthefdata (in the plot PC1 vs. PC2). Other
projection plots are also available (e.g. PC1 &3 Br PC2 vs. PC3) but they represent less
percentage of explained total variance of the syste consideration. Correlation and
importance of feature variables is to be decidethfthe factor loadings plots.

In environmental studies the interpretation of thenitoring data set using PCA is
concentrated mainly on visualization of the patieofi objects (e.g. sampling locations,
sampling periods, sampling dimensions or fracti@asion etc.) in the factor scores plots,
where the factor scores are actually the new coatés of the objects in the reduced factor
space. Another important option is consideratiorthaf factor loadings plots and tables
where the relationship between the features chemiaittg the objects could be observed
and interpreted.

As already mentioned above, the elements of theimatmark the participation of
each input feature (variable) in the formation icestain latent factor. Variables having low
values of the factor loadings negligibly influentiee factor since those with high or
negative loadings have a serious impact in the dtion of the latent factor. Indeed, the
factor loadings values of the input features argadrtant indication for its nature.
In environmental studies the latent factor ideo#ifion (very often each latent factor is
conditionally named in order to stress its naturd arigin) makes it possible to detect the
real natural or anthropogenic factors influencihg ecosystem and controlling its quality
and equilibrium.

Very often the latent factors structure is not wadfined. The participation of many
input features into one latent factor hindersntgiipretation. In order to simplify the latent
factor structure a rotation of the coordinate systé the factors is applied. In this case the
location of the objects does not change. The fieallt is the reduction of the number of
the “average” factor loadings values (their absoltglue counts) and respective increase of
those close to zero average value and those whalse Vs high. The simplified factor
structure could be achieved by orthogonal or ndhegonal transformation. In many
environmental studies this new structure descrifpgite satisfactory the impact of the
natural or anthropogenic real factors affectinggbesystem (Varimax rotation mode).

The application of PCA in an environmental studyldesolve problems related to:

» detection and determination of the structure of teal environmental factors
controlling the quality and the state of a cer@iwironmental compartment

« clarification and visualization of the structuretb& object of interest

* modelling of the system in consideration keepirg tthind the impact of the different
identified by PCA factors.

Thus, the principal components analysis is a wedlvikn projection method which
makes it possible to assess the mutual relatioashigden in the monitoring data set.
At the same time PCA is also a useful data modgllpproach. The opportunity to
construct a linear combination of the original ahies in the data set (columns in the input
matrix) being a better description of the featwharacterizing the objects (the rows in the
input matrix) leads to kind of abstract measuremémtthe system (the dimension of the
input data does not play any role; the latent factarn to be better descriptors of the
system). The final output brings more informatidsoat the system than the traditional
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chemical, physical or biological indicators. Thestact variables (latent factors, principal
components) require specific interpretation sincarall number of them describe a large
part of the system variation and in this way redi€elimensionality and allow its proper
visualization.

Cluster analysis

Exploratory data analysis (just like the PCA) igdisiominantly to determine general
relationships between data [7]. Very often the degatment procedure has to respond to
more complex questions about possible similaritftwlben monitoring results or between
sampling sites, i.e. question about formation @iugis within the data set. Cluster analysis
(CA) is a well developed strategy to determine treteships between different objects of
observation characterized by various featuresioe, versabetween the features describing
the different objects. In such cases the unsupsdvigttern recognition is the tool to solve
the problem and cluster analysis along with sorheromethods is used to group different
objects. CA enables objects stepwise aggregati@mording to the similarity of their
features. As a result hierarchically or non-hiehamally ordered clusters are formed.
A single cluster describes a group of objects #rat more similar to each other than to
objects outside the group. Similarity understoothim term of CA measures how alike two
cases are. While the term similarity has not unidenitions, it is common to refer to all
similarity measures as “distance in multi-featuspace” measures since the same function
is served. A similarity between two objectsndi’ is a distance if:

(D, =D,.)<0 whereD,. = 1ifx =x. (7)

wherex; and x, are the row-vectors of the data tablewith the features measurements

describing objects andi’. When two or more features are used to define #imiilarity,

the one with the largest magnitude dominates. Thisvhy primary standardization of

features becomes necessary. There are a varietiffefent measures of inter-cases

distances and inter-cluster similarities and dist@rto use as criteria when merging nearest

clusters into broader groups or when considerirgy riflation of an object to a cluster.

A few most popular ways of determining how similaerval measured objects are to each

other are as follows:

1. Euclidean distance the distance between two objextandy; is defined by equation
(2) wherg presents repetition of measurements.

Oy =~/im =%y (8)

2. Squared Euclidean distanegemoves the sign and places greater emphagibjents
further apart, thus increasing the effect of otglie

dig 5y = Zzl()ﬁj —%)° 9)

3. Manhattan distance (city-block distance, block alise) is the average absolute
difference across the two or more dimensions wiaoh used to define distance.
The Manhattan distance is defined slightly difféilseto the Euclidean distance. Except
for some specific cases when Manhattan distanegusl to Euclidean distance, it is
always higher than Euclidean distance.
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J
di sy = ,Z{M - ij| (10)

4. Chebychev distancis the maximum absolute difference between a phirases on
any one of the two or more dimensions (featuresichviare being used to define
distance. Pairs will be defined as different acowydo their difference on a single
dimension, ignoring their similarity on the remaigidimensions.

A ) =Max{x = x| (11)

5. Mahalanobis distancéakes into account that some features may belatwceand so
defines roughly the same object’'s properti€sig the variance-covariance matrix of
the features).

dy =y(x = %) (x- x)' (12)

6. Minkowski distanceshould be applied if the object weight is incragsielated to the
dimensions in each compared objects and indich&e®tvest similarity.

d(xvx-) :Zi:\/r (%= %.)° (13)

7. Pearson correlatioris based on correlation coefficient. Since forrBea correlation,
high negative as well as high positive values iatdisimilarity, the researchers usually
select absolute values.

There are several other related distance measweighted Euclidean distance,
standardized Euclidean distanagosine customizedetc.) but usually specific reasons are
required if a very sophisticated distance measute be applied.

In case of CA one task is related with determimatid similarity between measured
objects, but equally important is to define howealt$ or clusters are combined at each step
of similarity assessment procedure. One possibifity clustering objects is their
hierarchical aggregation. In this case the objaotscombined according to their distances
from or similarities to each other. Within hieraicdl aggregation agglomerative and
divisive methods can be distinguished. Divisivestduing is based on splitting the whole
set of objects into individual clusters, while iase of more frequently used agglomerative
clustering one starts with single objects and gaigumerges them in broader groups.
Usually some objects create one broader groupgwhit of them creates the other. As in
case of distance measure various algorithms (liekaghniques) are available to decide on
the number of clusters. They result in slightlyfeliént clustering pattern. A few most
popular linkage algorithms are:

1. Nearest neighbor (single linkage)the distance between two clusters is the distanc
between their closest neighboring objects, in otwerds the similarity of the new
group from all other groups is given by the high&stilarity of either of the original
objects to each other object.

_d;+d, _|dii _q'J|_ -
mTT S 5 min(d; ,d.; ) (14)

where:m - new object or cluster, i, j - clustered before objects.

d
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This algorithm performs well when the plotted céustare elongated or chain-like,
moreover the sizes of the clusters and their weight presumed to be equal.

2. Furthest neighbor (complete linkage)the distance between two clusters is the
distance between their furthest member objectsh&st neighbor algorithm of linkage
refers only to the calculation of similarity meassiafter new clusters are formed, and
the two clusters (or objects) with highest simtladre always joined first.

_ d; +d, _|dij _q'j|

m 2 2
This algorithm works well when the plotted clustdem distinct clumps (not

elongated chains). Application of the procedurespmted above leads to well separated,

small compact spherical clusters.

3. Average linkage the distance between two clusters is the avedagance between all
inter-cluster pairs. There are two possible wayscafculating average linkage
algorithm: non weighted and weighted, accordingtite size of each group being
compared1f). When the clusters’ size is equal both algoritlyive identical results.

g, =ty ighted 6
W= (non-weighted) (16)

d =max(d, ,d; ) (15)

dy = o d +I q, with n= n+ p (weighted) a7)
Applying weighted average Ilnkage algorithm causesdeformation of the clusters.

To some extent small clusters consisting of owtlieight arise.

4. Ward’'s methods a minimum distance hierarchical method whidledates the sum of
squared Euclidean distances from each case insteclto the mean of all variables.
The cluster to be merged is the one which will @se the sum the least. Thus, this
method minimizes the sum of squares of any patludters to be formed at a given
step.

n+n n+n

n
d. = d. + —— ] , 18
mj n+nj ij n+q q] n+rj]q ( )

5. Centroid linkageis calculated as the average of a cluster is egp@s the basis for
aggregation without distorting the cluster space.

_hy nn.

dyy d, + 2 dd 19

“dy+-td, -= dd (19)

6. Median linkageis calculated as the median of a cluster is appdiedhe basis for
aggregation without distorting the cluster space.

d. . )
dm' =_1 4+ q_J —&
2 2 4
An advantage of median linkage algorithm lies iag@rving the importance of a small
cluster after aggregation with a large one.

There are numerous additional linkage algorithraerrélation of items, binary
matching etc.), but it would be rare that a researchedsde apply too many combination

(20)
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of distance and linkage measures, however compafintany approaches may be a way of
clustering pattern validation.

In hierarchical agglomerative clustering the graphoutput of the analysis is usually
a dendrogram - a tree-like graphics, which indiedtee linkage between the clustered
objects with respect to their similarity (distanoeasure). Decision about the number of
statistically significant clusters could be made ddferent reasons. Often a fixed number
of clusters is to be assumed. Sometimes a distarezsure or an allowed difference
between clusters (classes) is used for evaluatireg number of significant clusters.
For practical reasons the Sneath’s index of clusitgrificance is widely used. It represents
this significance on two levels of distance mead®,., relation: 1/®,. and 2/ qx
Only clusters remaining compact after breaking lihkage at these two distances are
considered significant and are object of interpreta

The algorithms for non-hierarchical clustering offiee division of the studied objects
into a priori given number of clusters (determined by some fmaabr theoretical reasons).

In principle, the data set could be considered ama#rix consisting of rows (the
objects) and columns (the features describing Hjects). CA makes it possible to classify
both the objects and variables. This is very imguarfrom practical point of view because
in environmetric studies it is very interestingget information on relationships between
the sampling locations and between the monitoriatameters. The whole idea of risk
assessment is based actually on estimation ofioetdtip between monitoring features
(variables).

Specific goal of the cluster analysis is not om\classify data in a certain way but to
detect and visualize the reasons for grouping, tgdetect those features which are
responsible for the organization of the objects ihifferent structures. With the application
of CA an “optimization” of the data is achieved dw&f starting a more detailed data
analysis. This way of clustering finds groups ofeals or features spontaneously without
need of a preliminary training set or preliminanyformation about the system in
consideration.

Let assume that we have objects, which have to be clustered by the valoes
m features (variables). The input data ma¥ipn x m] is:

xll x12 en xlm
X X - X
x=|\"20 I T
)
Xn1  Xn2 v Xnm

Each object could be presented by the vekiocalled object vectar The final aim is
grouping of alln objects according to their features.

As already mentioned above the calculation of alafity measure is a substantial part
of the clustering algorithm. The graphical presgataof the determination of a distance of
similarity between two objeci8; andO, located in the space of two featuseandy could
be found in Figure 1 (Euclidean distance). Thigatise could be calculated using the
Pythagoras theorem

d(0, Q) =y(%- %) +(%- %)’ (21)
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Fig. 1. Euclidean distance between two objects

d(O;, Oy is the Euclidean distance and could be easilynsarized form features for
each couple of objec andOy:

m

d(ik) = Z(XJ‘_&')Z (22)

i=1

This is only a partial case from the more generialldgwski distance shown above:

d(i,k):c/im —x[° (23)

where C is a special parameter with values:
* C=1-the absolute distance between the ob@at) =a + b,
e C=2-Euclidean distance,
e« C>2-inthis situation objects - outliers coulddetermined.
The choice of similarity measure is an obligatiow @rivilege for the chemometrician
In most of the situations the Euclidean distanceteat better differences between the
objects, since the correlation distances are petldor finding objects similarities.
The determination of the similarity requires tramsfation of the raw input data
due to:
» features are measured in different scales,
» features have different dimensions (orders of ntage)),
» features have different variation.
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Unwanted declination of the data structure are dmaiby the use of different
transformations and scaling procedures and the soostd of them is so called autoscaling
(ztransform):

= (24)

where X, :lz X, and S, :%2(4 —X)Z . The valueg; are dimensionless and are
n= n—-1%=

normally distributed with mean value 0 and variatio

Fromz; values the Euclidean distances are calculatedifigrithe similarity matrixD.
This (hxn) matrix is symmetrical with zeros along the maiagdnal:

0 d, d, .. d

oo|dn O dy o,

d, d, d, ... O

After determination of the distances of similarithe linkage algorithm has to be
chosen and one of the most representative grapbimtal for the hierarchical agglomerative
linkage is the dendrogram.

In most of the environmental studies the agglomerahierarchical methods are
widely used. However, the different linkage aldamis could produce different
classification results. Since the correct intergiien of the clustering is the main goal of
the studies, it is important to have comparisothefmostly used linkage algorithms.

The scheme offered by Lance and Williams descrit@msparatively the different
linkage options. Let us assume that between thecthj; andi, the highest level of

similarity exists. The distances between the nefetyned clusteri;, and the rest of the
groups (clusters) could be expressed in the foligwiay:

d(ilz’k):aldilk+a2q2k+ﬁql,2+V|QL_ dz,| (25)

where:a; - the relative weight of the distance betweéemnd a certain object (cluster),
o, - the relative weight of the distance betwegmand a certain object (clustep,- the
relative weight of the distance betwekgnandi,, y - the relative weight of the distance
betweeri; andi, and a certain object (cluster).

In Table 1 the most applied linkage algorithms jaresented by combination of the
parameters, 3, andy.

Table 1
Linkage algorithms in cluster analysis
Algorithm a ap B y Distance Result
Average linkage 05 05 0 0 %(d.m +d,, ) Average clusters
Single linkage 0.5 0.5 0 -0.1 min(dil‘k + qZk) Big clusters
Complete linkage 0.5 0.5 0 0.5 max(dil,k + diZk) Small clusters
Ward’s method | fy(n") fy(n) fy(n) 0 depending om’ Balanced clusters
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From all these algorithms only the method of Wasdsua posteriorf criterion. Using
the heterogeneity of the system expressefl(hy), one can decide if a certain object joins
a given cluster or not.

The use of fuzzy logic in cluster analysis has te@amany hierarchical and
non-hierarchical algorithms called fuzzy clustgrin

Let us assume that a set of objeEtsvith classification structureQy, C,, ... Cy) is
available. The standard approaches under the ctamethard clustering” suppose that
each object oE belongs exactly to a certain clus@. However, the practical application
of cluster analysis often leads to another outputertain object could be associated to
greater or lower extent to several clusters simeltasly. That is why in fuzzy clustering
the measurg is introduced, which presents the level of assmriaf object to clusterCy
and can accept all possible values within the watidi0,1]:

0<tx<1

Thus, for each object that does not belong enti@lgne single cluster several values
of ty bigger than zero could be found and for them ¢itleviing condition is fulfilled:

K
D't =1 wherei=12,..n (26)
i=1

The definition of the membership of each objece&ah cluster is given by a vector
consisting ot values:

§=(tuto ) (27)

Fuzzy clustering aims the determination of the memsihip function for each object
and, in such a way, achieving a more reliable “sbftstering” of the object, giving
different options for belonging to one or anothieister.

The classification of the objects or the featuriea system using cluster analysis could
solve the following problems:

» detection of data structure,

» detection of factors responsible for this structure

» which of the objects are accordingly grouped andlc@articipate in creation in
intergroup model,

» which features adequately describe the objectphrdomena studied,

» projection of the multivariate data on plane andstaiction of respective graphical
image.

Principal componentsregression

In case of many studies related to natural ecosystBCA and other multivariate
statistical techniques are used to determine plessdtural or anthropogenic influences in
the formation of the determinants total mass. Hane¥CA does not provide a direct
balancing and apportionment. After the pollutiomrses identification by the application
of PCA, the next calculation step in modelling dralancing of pollution impacts is the
apportioning itself. It is performed mostly by ahge principal components analysis
(APCA). The procedure introduced by Thurston andrigjer is well developed and often
applied for apportionment purposes, mainly in afipoment of airborne particulate matter.
However, recent applications of the approach prowecdeffectiveness in apportionment
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monitoring studies for other environmental companis like surface water, soils,
sediments, and biota.

The first step in the source apportionment methmglplof Thurston and Spengler [8]
performing of principal components analysis. Aatly described the input monitoring
data are transformed into a dimensionless starmatdbrm, mostly by z-transform. It is
important to note at the outset that, for multistei analyses such as proposed, sufficient
degree of freedom should be available in the motals, the dataset employed must have
many more observatioms (cases, objects) than variable¢features, parameters). If stable
results are to be derived an empirical rule recomdam> n + 50.

The PCA assumes that the total concentration df ebament is made up of the sum of
elemental contributions from eachfgfollution source components. Hence

Zi=Y W, Py (forj=1...9 (28)
where Py is the jth component’s value for observatidnj = 1,...p is the number of

pollution sources influencing the data afflis the coefficient matrix of the components.
This equation may be inverted, yielding (in matexms)

[Pl = [Bljxi [Z]ixx (29)
where

[Blixi = [Wljxil4 (30)

where/; is the eigenvalue associated wif

The PC scoring matrixB] is derived so that the first principal compondtl
explains as large a per cent of the original véeslbtotal variance as possible.
The coefficients for the second principal componeé@?2 are, in turn, chosen so that it
explains as large a per cent of the remaining madain the original variables
(i.e. not explained by PC1), subject to the restmcthan PC1 and PC2 are uncorrelated.
In general, the coefficients for RCare chosen so that BCexplains as much of the
remaining variance (i.e. not explained by PC1 4 B subject to the constraint that {C
be uncorrelated with the previous PCs.

The PC equation coefficient8][ are mathematically derived from the correlation
matrix

[Rlii = [Z]ixi [2]' (31)

Since the objective of PCA is to find orthogonahdarrelated) components, the

correlation matrix [R] is diagonalized. The diagonalization finds a mxa® such that

[Q i [Rlixi [Qlixi = [ (32)
where U] is a diagonal matrix (i.e. a matrix with no ofidonal cross-correlation terms) of
eigenvalues arranged in descending order of madmiandQ contains the corresponding
eigenvectors which diagonalize the correlation maBy definition, these eigenvectors are
the matrix [B], which can be used to derive thedeGre matrix [P] from the [Z] matrix.

The primary objective of applying PCA is to deri@esmall number of components
which explain a maximum of the variance in the dhtdially, the PCA results in as many
PCs as there are original variablesUsually, however, only a limited number of these
uncorrelated PCs (e.g. five or six) are requirecexplain virtually all of the variance
in a data set of fifteen or more original (interetated) variables. In order for this
reduction in the dimensionality to be useful, tlesvrnvariables (components, latent factors)
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must have simple substantive interpretations. Boglly, it has been found that unrotated
PCs are often not readily interpretable since thagh attempt to explain all remaining
variance in the data set. This calculation resunlta number of sources of variance being
grouped together. For this reason, a limited nundfecomponentsp( < n) are usually
subjected to rotation using a criteria such asmaxi After PCA rotation, the resulting
components have been found to often be more rapetse of individual underlying
sources of variation. This, in turn, results in mointerpretable and useful PCs
corresponding, for instance, to different sourcépalution like oil combustion, vehicle
emissions, soil dust etc.

The first step in the derivation of source impastfo calculate component scores for
each sample (object). Rotated PC coefficieBts,are calculated by applying the rotation
transformation matrix [T] to [B]

[B]*pxn = [Blopxn [ Tlnxn (33)
Rotated PC scores are computed using the transfofBjenatrix
[P]*pxm: [B]*pxn [Z] nxm (34)

These PC scores are correlated with their resgeptillution source impacting the site
(i.e. a higher component scd?*qk implies a higher pollution impact by the pollutisaurce
j during observationk). However, because they are computed from the alred
elemental concentratior, they too are normalized. Each component indicaésfations
from the mean source impacts; they are not prapmatito these pollution impacts.

It has been shown that the regression of a depéndenbleY on the daily scores of
component®y could be presented by the formula

Y= Ya+ 3G Py (forj=1...9 (35)
where Y, equals the mean of,. If the dependent variablg, is the total mass (for air
particulate matter, inug m~]), then { are the conversion coefficients of the non-
dimensional PC score deviations into mass deviatfoom the mean source impact. Since
the components are not scored as deviations from bet instead as deviations from the
mean, this results in the presenceYgfin the equation. This, in turn, prevents a direct
apportionment of the total particle mass at thepdizng site to the normalized pollution
source components.

Different studies have addressed the problem oividgr components related to
absolute zero by initializing a correlation abcdwg prigin (instead of about the mean) and
normalizing the data to the mean of all elementeaoh sample (Q analysis) instead of to
the mean of all samples for each element (R ar®ly3ihis allowed retention of the
information regarding the relative size of eachhaat in absolute terms (i.e. distance from
zero). The resultant vectors ware then target fioamed to align (to a least square fit) with
known pollution source element profile vectors. fm approach attempted to target
factors to assumed single element trace composijtibut the data employed were very
limited. These techniques of target transformafaxtor analysis (TTFA) are not readily
executed with conventional statistical packageschvbo not provide for target rotations.

The already classical approach of Thurston and @penffers a simple PCA pollution
apportionment procedure which can be executed arvertdional, generally available
statistical packages such as STATISTICA. The PCAdsducted using a conventional
R analysis of elemental concentrations about the@ans.
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As the factor scores obtained from PCA are norredlizvith mean zero and standard
deviation equal to unity, the true zero for eactida score is calculated by introducing
an artificial sample with concentration equal toozor all variables.

(0-C)
2z, =5 (36)
S $
where:C; - arithmetic mean concentration of analy{@nderstood as features,- standard
deviation of variablé.
Then the rotated absolute zero PC scdPedfor each ofp components are calculated

Pop=YBpi(Zo) (fori=1...n (37)

These estimates of the PC scores for each companhabtsolute zero are then used to

estimate Absolute PC ScoresHCS for each component on each sampling day as fatlow
[Apcs*pxj = [P]*pxj_ [PO]*pxj (38)

where thg columns of Py~ are all identically equal to the values calculafmd%p*. It can

be proved in a straight forward manner that theuwation for APCS  gives the exact

score which would be achieved had the originaliegdbeen executed using unnormalized

data.

Regressing (multiple linear regression) the mointpresults on thesAPCS give
estimates of the coefficients which convert tA€CS into pollutant source mass
contributions fig ¥ from each source for each sample.

The source contributions 1§ can be calculated by mentioned above linear reigress
procedure according to the following:

C =(h) +Y APCSOR, FL2,.,1 (39)

where: )i - constant term of multiple regression for varéablby - the coefficient of
multiple regression of the sourpdor variablei, APCS - scaled value of the rotated factor
p for the considered samplePCS-by, represents the contribution of soupt C;.

The mean of the produétPCS-b,; on all samples represents the average contribution
of the sources. The method estimates source pofitel contributions but its serious
disadvantage is error propagation in centering ancentering of data. This balancing
approach accepts that all sources have been i@enitiy the principal components analysis
and all of them participate in the source contidouprocedure.

N-way principal components analysis

Most common chemometric techniques are performéthusvo-way data sets, often
presented in the form of matrices. However, duéntoeasing interest of handling of
three-way data matrices three-dimensional analogiesvo-dimensional techniques are
required. For example, a two-dimensional PCA hasaitalogue in the form of Tucker3
model [9]. The generality of the Tucker3 model, hadde it an often used model for
decomposition, compression and interpretation imyrepplications. The use of multiway
models provides a better insight into the datacttine, reduces the noise, and shows which
of the original variables are correlated and whi€them are most significant for a certain
environmental problem description. It should be bagized at this point that the most
typical environmental data sets have the followifmrm of a three-dimensional
(three-mode) matrix: sampling sitevariablesx time, but examples in which two separate
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modes of the data array are formed by the time n&m@ are also widely known
(e.g. months, years). Tucker3 model involves catoul) weight matrices corresponding to
each of the three modes and is one of the mostc-bagti way models used in
environmetrics. The model is defined by the decasiijum of a three-way matriX into
a three-waycore matrix Zand three two-way loading matricAsB, C (one for each mode):

L M N

EDIDIPILN MCA HE (40)

1=1 m=1n=1
whereeijk represents the residual error term (graphical examfpdecomposition realized
by Tucker3 model is presented in Figure 2).
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Fig. 2. Tucker3 decomposition model

Tucker3 algorithm delivers a set off possible sohd which mean large number
combination of possible models with different coaxilies. To select a model with an
optimal complexity, the variance of each combinatid model complexities starting from
the model with the lowest number of factor in eanbde, to model with the highest
complexity should be evaluated. Most often, thémakt model is the one with possibly the
smallest number of factors in each of the modekplaining a large part of data variance.
In practice, a trade-off between both requiremésitseeded. At the same time, a set of
possible Tucker3 models should be validated, egjngu cross-validation procedure.
The cross-validation is performed in such a way paat of the data are set to missing, the
models are fitted to the remaining data, and tisedvals between fitted and true left out
elements are calculated.

Self-organizing maps (SOM)

The Self-organizing map (SOM) algorithm has beeoppsed by Kohonen [10] in
1980. It is a neural-network based model which ehiawith the conventional ordination
methods, the basic idea of displaying a high-dinwerad signal manifold onto a much
lower dimensional network in an orderly fashion ualty 2D space). The SOM is
a competitive learning algorithm based on unsugetiilearning process. This advantage
causes no researcher intervention is required glutie learning process and that little
needs to be known about the characteristics ofrihet data. In the SOM algorithm, the
topological relations and the number of neuronsdésd organized on a regular



Basic multivariate statistical methods for envir@ntal monitoring data mining: Introductory course .51

low-dimensional grid are fixed from the very bedimpn The number of neurons may vary
from a few dozen up to several thousand. Becaus8@i algorithm there are no precise
rules for the choice of the various, primary defipparameters, the most common shape of
the Kohonen map is a rectangular grid with the nemds hexagonal nodeg)(determined
using following equation:

n =50/ number of case (41)

Basically, the two largest eigenvalues of the trajrdata are calculated and the ratio
between side lengths of the map grid is set to rdt® between the two maximum
eigenvalues. The actual side lengths are then sehat their product is close to the
determined number of map units as stated aboveadteral lattice is preferred because it
does not favor horizontal or vertical direction. cBaneutroni is represented by
a d-dimensional weight vector (called also prototypecter or codebook vector)
m = [m,...,my], whered is equal to the dimension of the input vectorse Heurons are
connected to adjacent neurons by a neighborhoatio®e] which dictates the topology, or
structure of the Kohonen map and, thus, similaectisjshould be mapped close together on
the grid. After primary initialization, the weigkiectors are characterized by random values
and then SOM is trained iteratively with one of twossible algorithms: sequential or
batch. A sequential training algorithm (STA) consts the nodes in a SOM in order to
represent the whole data set and their weight®jgtienized at each iteration step. In each
step, one sample vectarfrom the input data set is chosen randomly anddibtances
between it and all the weight vectors of the SOM aalculated using some distance
measure, e.g. Euclidean distance, squared Euclidistemce, Mahalanobis distance etc.,
thus, the optimal topology is expected. Naglavhose weight vectomy) is closest to the
input vectorx is called the best matching unit (BMU):

[x=m = min{]| x- m} (42)

Where” || is a distance measure (typically Euclidean distandemissing data appears,

they are handled by simply excluding them from thiistance calculation
(e.g. it is assumed that their contribution to dietance|x - m|is zero). Because, the same

missing value is ignored in each distance calauatpver which the minimum is taken),
this is a valid solution. After finding the BMU,ahweight vectors are updated in agreement
with presented below update rule, so that the BiUnbved closer to the input vector.
The topological neighbors of the BMU are moved etotoo because of their mutual
connection.

m(t+)=m®+a()h (A X)- m( ) (43)

where:t - time, m(t) - weight vector indicating the output unit’s Itica in the space at time
t, a(t) - learning rate at timg h; - neighborhood non-increasing function centerethin
winner unitc at the timet, x(t) - input vector randomly drawn from the input datt at
timet.

The sequential training algorithm is usually pemfed in two phases. In the first phase,
relatively large initial learning rate(t = 0) and neighborhood radiug, are used.
In the second phase both learning rate and neipbbdrradius become smaller.
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The second possible training algorithm is calledclbatraining algorithm (BTA),
because instead of using a single data vectotiatea the whole data set is presented to the
map before any adjustments are made. In eachrigastép, the data set is partitioned to the
Voronoi regions of the map weight vectors (e.ghedata vector belongs to the data set of
the map unit to which it is closest). After thdtetnew weight vectors are calculated as
shown in the following equation:

>R (®x
>R

wherec=arg min<{|| X rn"} is the index of the BMU of data sampje

m(t+1) = (44)

The new weight vector is a weighted average ofidita samples, where the weight of
each data sample is the neighborhood function vhal(® at its BMU c. Analogous to
sequential training algorithm missing values areoigd in calculating the weighted
average. The quality of mapping can be quantitBtireeasured with the quantization error
(QE) and the topographic error (TE). After competitiearning process, SOM algorithm
enables graphical presentation of results in thenfof set of maps (features’ planes) and
accomplishment of clustering tasks as well. Featykanes can be considered as a sliced
version of the SOM map and provide a powerful tmohnalyze the community structure.
When a plenty of features is considered it is difi to compare all maps for all features
and thus becomes necessary to find similarity betmwthem, and simultaneously, in the
cases’ space and classify them into clusters. Ifgaitires’ planes (e.g. variables) could be
visualized on a summary SOM map (called also afiegndistance matrix or U-matrix) to
show the contribution of each feature in the seffamization of the mapU-matrix
visualizes distances between neighboring map uaitd,helps to identify cluster structure
of the map: high values of the U-matrix indicateslaster border, uniform areas of low
values indicate clusters themselvesiile each feature’s plane shows the values of one
feature in each map unit. In other words U-matsigresses semi-quantitative information
about the distribution of a complete set of featui@ a complete set of the cases while
separate feature’s plane visualizes distributiom given feature for a complete set of the
cases. Because of this, U-matrix joined with fesguplanes can be effectively applied for
assessment of inter-features and inter-casesam$atiAccording to clustering task, one of
the most commonly applied algorithm is non-hieram@hK-means clustering algorithm.
In this case, different values kf(predefined number of clusters) are tried andstima of
squares for each run is calculated. Finally, thet belassification with the lowest
Davies-Bouldin index should be chosen (it is a fiom of the ratio of the sum
of within-cluster scatter and between-cluster saipam).

The SOM is an algorithm used to visualize and prterlarge high-dimensional data
sets SOM is unsupervised pattern cognition methmdasly to cluster analysis. The main
advantage of SOM is the simultaneous classificatibivariables and objects (sampling
locations). Typical applications are visualizatioh process states or financial results
by representing the central dependencies withinddia on the map. The map consists
of a regular grid of processing units.

A model of some multidimensional observation, eually a vector consisting of
features (variables), is associated with each Whi¢. map attempts to represent all available
observations with optimal accuracy using a restdctet of models. At the same time the
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models become ordered on the grid so that similadeis are close to each other and
dissimilar models far from each other. Fitting lo¢ tmodel vectors is usually carried out by
a sequential regression process, whetel, 2,... is the step index: For each sanxfie
first the winner indexc (best matching unit - BMU, Fig. 3) is identified ltlye already
mentioned condition:

O, [x () —m, (8] < | () - m(3) (45)

objects

QJ:';.JLQJ;Q#!!; e
O o D

grid of neurons

Fig. 3. Self-organizing map architecture

After finding the BMU, the weight vectors of the BGare updated so that the BMU is
moved closer to the input vector in the input sp&ig. 4).

X mput object

® BMU at step t
© BMU at step t+1

Fig. 4. Updating the BMU and its neighbors towattisinput object



54 Vasil Simeonov

Then, all model vectors or a subset of them thédrigeto nodes centered on node
¢ = ¢(x) are updated as:

m(t+1)=m(9+ by ()= m()) (46)

Here hyy, is the "neighborhood function”, a decreasing fiorctof the distance
between théth andcth nodes on the map grid. This regression is ugueiferated over the
available objects.

The trained map could be graphically presented Dy ptanes for each variable
indicating variable distribution values on the diffint map regions by different colors.
Additionally the node “coordinates” (vectors) coulsk clustered by non-hierarchical
K-means classification algorithm. Main advantageS©M algorithm application are:

(i) the projection of variables similarity in the formf features’ planes delivers
semi-quantitative information about the distributiof a given feature in the space of
the cases,

(i) SOM visualization enables presentation both siityldnetween positive as well as
negative correlated features,

(i) SOM visualization and SOM-supported classificatisnable to indicate “outliers”
e.g. those features or cases which do not belorsy weell-organized, homogeneous
populations,

(iv) SOM is noise tolerant (this property is highly dable when site-measured data are
used).

Partial least squaresregression

Partial least squares (PLS) regression [11] isnofteesented as the major regression
technique for multivariate data. In fact its usen@ always justified by the data, and the
originators of the method were well aware of thigt in some applications PLS has been
spectacularly successful. In spectroscopy or chtognaphy we usually expect linear
additivity, and this is especially important forechical instrumental data, and under such
circumstances simpler methods such as multipleatinegression (MLR) are often useful,
especially when the system in consideration is Welbwn. However, PLS is always
an important tool when there is partial knowleddethe data, e.g. NIR spectroscopic
measurements of wheat protein. A model can be mdadairom a series of wheat samples,
and PLS will use typical features in this datatseestablish a relationship to the known
amount of protein. PLS models can be very robusviged that future samples contain
similar features to the original data, but the préohs are essentially statistical.

The most wide spread approach is often called Pl/Sthough there are several
algorithms, the main ones due to Wold and Martéhs, overall principles are quite
straightforward. Instead of modelling exclusivehei variables, two sets of models are
obtained:

X=T-P+E (47)

c=T-q+f (48)
whereq has analogies to a loadings vector, although isnoomalized. The product af
and P approximates to specific data (e.g. spectral datal)the product of andq to the
true outputs (e.g. concentrations); the common K. An important feature of PLS is

that it is possible to obtain a scores matrix isatommon to both the concentratiom$ (
and measurementg)( It has to be stressed thatandP for PLS are different t@ andP
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obtained in PCA, and unique sets of scores andrigadre obtained for each compound in
the data set. Hence if there are 10 compoundseriest, there will be 10 sets BfP andq.
In this way PLS differs from PCR in which thereoidly one set of andP.

For an imaginary data set consisting of 25 speahserved at 27 wavelengths, for
which 8 PLS components are calculated, there will b
* aT matrix of dimensions 25 x 8,

» aP matrix of dimensions 8 x 27,

* anE matrix of dimensions 25 x 27,
e agvector of dimensions 8 x 1,

» an f vector of dimensions 25 x 1.

Each successive PLS component approximates bottotteentration and spectral data
better. For each PLS component, there will be a:

*  scores vectot,
» spectral loadings vectgx,
» concentration loadings scalar

In most of PLS implementations it is conventioralcenter both th& andc data by
subtracting the mean of each column before analisisalways this procedure is needed.

For a given compound, the remaining percentager énrdhe x matrix for a PLS
components can be expressed in a variety of walys. pfedicted measurements simply
involve calculatingX. = T - P. The only difference is that each compound gemerat
a separate scores matrix, unlike PCR where thera ®ingle scores matrix for all
compounds in the system and so there will be @mifft behavior in thg block residuals
according to the compound.

An extension to PLS1 is often called PLS2; theela#tlows the use of a concentration
matrix C rather than concentration vectors for each indi@iccompound in the system and
the algorithm is iterative. The equations for PL&ffer slightly in thatQ is a matrix
(not a vector), so that:

X=T-P+E (49)
C=T-Q+F (50)
The number of columns inlC and Q are equal to the number of objects

(e.g. compounds) of interest. In PLS1 one compasnohodelled at a time, whereas in
PLS2 all known compounds can be simultaneouslyided in the model.

Conclusion

The presented lecture is dedicated to master dsidmrt could be of use for any
student interested in data mining approaches. énréfierences some major textbook are
given and each one of them could be source of iadditinformation on the theory and
application of chemometrics and environmetrics data interpretation and modelling.
Additional small selection of applications of exgtory data analysis are offered for
individual work and seminars [12-17].
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