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BASIC MULTIVARIATE STATISTICAL METHODS  
FOR ENVIRONMENTAL MONITORING DATA MINING: 

INTRODUCTORY COURSE FOR MASTER STUDENTS 

Abstract: The present introductory course of lectures summarizes the principles and algorithms of several widely 
used multivariate statistical methods: cluster analysis, principal components analysis, principal components 
regression, N-way principal components analysis, partial least squares regression and self-organizing maps with 
respect to their possible application in intelligent analysis, classification, modelling and interpretation to 
environmental monitoring data. The target group of possible users is master program students (environmental 
chemistry, analytical chemistry, environmental modelling and risk assessment etc.). 
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Introduction 

The scientific discipline chemometrics has won a high level of prestige in the recent 
three decades. Although many scientists state that there is no specific focus of the 
chemometrics since it is split between many different fields of application among them 
analytical chemistry, organic chemistry, theoretical and computational chemistry, 
environmental chemistry, chemical technology, geochemistry, hydrochemistry etc. Data 
analysis is needed everywhere but the approach to the different goals of the chemometric 
study could be radically different. That is why different definitions of the chemometric 
strategy and ultimate goals could be found. It is our conviction that chemometrics  
as applied to the problems of the environmental chemistry could be named environmetrics 
and its main goals are classification, modelling and interpretation of environmental 
monitoring data sets.  

In many environmental studies different patterns have to be determined and interpreted 
[1-5] just to mention few out of many examples. For instance, could monitoring data be 
used to classify various sampling sites along river catchments?  If sets of different sites 
come into different patterns, it seems possible to optimize the number of sampling point in 
the monitoring net using the patterns formed as information source for the river water 
quality instead of using each one of the separate sampling points. Is it possible to identify 
latent factors responsible for the data structure of the monitoring net consisting of mutually 
correlated chemical parameters of the water quality? If the answer is positive, then a model 
of the environmental system could be constructed informing on the impact of different 
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natural or anthropogenic factors on quality of the system. Thus, the tasks for risk 
assessment and risk management become more real and applicable.  

Exploratory data analysis (EDA) is based mainly on the multivariate statistical 
methods called principal components analysis (PCA) and factor analysis (FA). Using these 
methods one could visualize a multivariate data set, to detect relationships in a reduced 
coordinate space both between object of interest and variable characterizing the objects. 

Another group of methods are often named unsupervised pattern recognition. Cluster 
analysis is one of the mostly applied from this group. Its goals are to construct a scheme of 
similarities between different features, called dendrogram, in which more closely related 
objects are closer to each other. The main branches of the tree-like scheme represent 
deviations from the similarities. Unsupervised pattern recognition differs from exploratory 
data analysis in that the aim of the method is to detect similarities whereas using EDA there 
no particular insight whether at all or how many groups will be detected. Very often it is 
said that the unsupervised pattern recognition is a spontaneous classification method 
without any preliminary training of the data set to follow a specific requirement to classify 
the data into a preliminary chosen number of similarity groups.  

There are a large number of methods for supervised pattern recognition, mostly 
dedicated to classification problems. The chemometricians have created many discriminant 
methods where a training set of knowing groupings has to be available in advance.  
The question then is to find to which preliminary formed class (group) belongs an unknown 
sample (object). 

Basic environmetric methods 

In this lecture some basic principles of the mostly used environmetric methods will be 
presented. 

Principal components analysis (PCA) 

Principal component analysis (PCA) seems to be the most widespread multivariate 
chemometric technique and is a typical display method (also known as eigenvector 
analysis, eigenvector decomposition or Karhunen-Loéve expansion) [6]. It enables 
revealing the “hidden” structure of the data set and helps to explain the influence of latent 
factors on the data distribution. PCA is done on covariance matrix when the data are 
centered or on correlation matrix when the data are standardized. PCA transforms the 
original data matrix into a product of two matrices, one of which contains the information 
about the objects or cases (e.g. sampling sites from a monitoring net) and the other about 
the features (e.g. chemical or physicochemical parameters determining the quality of the 
environmental system in  concentration units).  

If the input data set is represented as a matrix containing m number of rows and  
n number of columns the main goal of PCA is to decompose the initial data set into matrix 
of the score vectors and matrix of the loadings vectors: 
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Thus, the matrix characterizing objects contains the scores (understood as projection) 
of objects on principal components (PCs). The other one, characterizing features is a square 
matrix and contains the set of eigenvectors (understood as weights, in PCA terminology 
called “loadings”) of the original features in each PC. In matrix terms, this can be expressed 
as: 

 X S L E= ⋅ +  (1) 

where X is the original data matrix (features as columns, cases as rows), S is a scores matrix 
(has as many rows as the original data matrix), L is a loadings matrix (has as many columns 
as the original data matrix), E is an error matrix. 

The number of columns in the matrix S equals the number of rows in the matrix L.  
It is possible to calculate scores and loadings matrices as large as desired, provided the 
“common” dimension is no larger than the smaller dimension of the original data matrix, 
and corresponds to the number of PCs that are calculated. Each scores matrix consists of  
a series of column vectors, and each loadings matrix a series of row vectors. Many authors 
use sa and la notation to express these vectors, where a is the number of the PC.  
The matrices S and L are composed of several such vectors, one of each PC. The first scores 
vector and first loadings vector are often called the eigenvectors of the first PC. Each 
successive component is characterized by a pair of eigenvectors. Using f eigenvectors in 
one dimension, where f is smaller than, or equal to the rank of the data, f PCs can be 
obtained. Usually, a small number of PCs is needed to represent most of the information in 
the data. The minor PCs which explain little of the data structure can be eliminated, thus 
simplifying the analysis. Also, these minor PCs contain most of the random error, so 
eliminating them tends to remove extraneous variability from the analysis. In the 
ecosystems monitoring studies PCA and related multivariate techniques are often applied to 
determine the possible influence and contribution of natural and anthropogenic factors in 
data structuring.  

The decomposition of the input matrix is achieved by transformation of the major axes 
of the correlation matrix R. The problem solution with the eigenvectors values: 

 R·e1 = λ1·e1 (2) 

 R·e2 = λ2·e2 (3) 

where: e - eigenvectors, λ - eigenvalues, 
leads to the following determinant: 

 |� − ��| = 0 (4) 

Its solution brings couples of eigenvectors and eigenvalues with following properties: 
• the eigenvalues are measure for explanation by the identified latent factors total 

variation ( )2
totals  of the correlation matrix R, 

• the eigenvalues are ordered in decreasing rank: 

λ1 > λ2 > … λm, 

• the sum of all eigenvalues is equal to the number of the features (variables) m, 
• the eigenvectors are orthogonal to each other, 
• the eigenvectors contain the non-normalized coefficients of the factor loadings  

matrix A. 
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The eigenvalues are normalized by division by jλ . This normalization leads to the 

values of the factor loadings in matrix L. These factor loadings have sense of statistical 
weights (they take values within the interval [0, 1]) and indicate the weight of the starting 
features in the newly formed latent factor. 

The new characteristics (latent factors) do not correlate each other and along with the 
eigenvalues explain the total variation of the input data set. Since  
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the part of the variation explained by factor j is: 
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Some important features of PCA could be summarized as follows. The principal 
components axes (the axes of the hidden variables) are orthogonal to each other. Most of 
the variance of the data is contained in the first principal component. In the second 
component there is more information than in the third one etc. For interpretation of the 
projected data both the score and the loading vectors are plotted. In the score plots, the 
grouping of objects can be recognized. A loading plot reveals the importance of the 
individual variables with respect to the principal component model. 

A very important task in PCA is the estimating the number of principal components 
necessary for a particular PC model. Several criteria exist in determining the number of 
components in the PCA model: 
(i) percentage of explained variance, 
(ii) eigenvalue - one criterion (Kaiser criterion), 
(iii) Scree - test, 
(iv) cross validation. 

The percentage of explained variance is applied in sense of a heuristic criterion. It can 
be used if enough experience is gained by analyzing similar data sets. If all possible 
principal components are used in the model the variance can be explained by 100 %. 
Usually, a fixed percentage of explained variance is specified, e.g. 80 %. In environmental 
studies even 75 % of explained variance is a satisfactory measure for the adequateness of 
the PCA model chosen. 

The eigenvalue - one criterion (Kaiser criterion) is based on the fact that the average 
eigenvalue of autoscaled data is just one. In this case only eigenvalues greater than 1 are 
considered important. 

The Scree - test is based on the phenomena that the residual variance levels off when 
the proper number of principal components is reached. Visually the residuals or more often 
the eigenvalues are plotted against the number of latent factors in a Scree plot.  
The principal component number is then derived from the leveling-off in the plot. 

The forth approach of deciding on the number of principal components uses  
the following idea. In the simplest case, every object of the input matrix X  
is removed (leave-one-out method) from the data set once and a model with the remaining 
data is computed. Then the removed data are predicted by the use of the PCA model and 
the sum of the square root of residuals over all removed objects is calculated. In case of 
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large data sets, the leave-one-out method can be replaced by leaving out a whole group of 
objects.  

Interpretation of the results of PCA is usually carried out by visualization of the 
component scores and loadings. In the score plot, the linear projection of objects is found, 
representing the main part of the total variance of the data (in the plot PC1 vs. PC2). Other 
projection plots are also available (e.g. PC1 vs. PC3 or PC2 vs. PC3) but they represent less 
percentage of explained total variance of the system in consideration. Correlation and 
importance of feature variables is to be decided from the factor loadings plots. 

In environmental studies the interpretation of the monitoring data set using PCA is 
concentrated mainly on visualization of the patterns of objects (e.g. sampling locations, 
sampling periods, sampling dimensions or fractionalization etc.) in the factor scores plots, 
where the factor scores are actually the new coordinates of the objects in the reduced factor 
space. Another important option is consideration of the factor loadings plots and tables 
where the relationship between the features characterizing the objects could be observed 
and interpreted.  

As already mentioned above, the elements of the matrix L mark the participation of 
each input feature (variable) in the formation in a certain latent factor. Variables having low 
values of the factor loadings negligibly influence the factor since those with high or 
negative loadings have a serious impact in the formation of the latent factor. Indeed, the 
factor loadings values of the input features are important indication for its nature.  
In environmental studies the latent factor identification (very often each latent factor is 
conditionally named in order to stress its nature and origin) makes it possible to detect the 
real natural or anthropogenic factors influencing the ecosystem and controlling its quality 
and equilibrium.  

Very often the latent factors structure is not well defined. The participation of many 
input features into one latent factor hinders its interpretation. In order to simplify the latent 
factor structure a rotation of the coordinate system of the factors is applied. In this case the 
location of the objects does not change. The final result is the reduction of the number of 
the “average” factor loadings values (their absolute value counts) and respective increase of 
those close to zero average value and those whose value is high. The simplified factor 
structure could be achieved by orthogonal or non-orthogonal transformation. In many 
environmental studies this new structure describes quite satisfactory the impact of the 
natural or anthropogenic real factors affecting the ecosystem (Varimax rotation mode).  

The application of PCA in an environmental study could solve problems related to: 
• detection and determination of the structure of the real environmental factors 

controlling the quality and the state of a certain environmental compartment  
• clarification and visualization of the structure of the object of interest  
• modelling of the system in consideration keeping the mind the impact of the different 

identified by PCA factors. 
Thus, the principal components analysis is a well-known projection method which 

makes it possible to assess the mutual relationships hidden in the monitoring data set.  
At the same time PCA is also a useful data modelling approach. The opportunity to 
construct a linear combination of the original variables in the data set (columns in the input 
matrix) being a better description of the features characterizing the objects (the rows in the 
input matrix) leads to kind of abstract measurements in the system (the dimension of the 
input data does not play any role; the latent factors turn to be better descriptors of the 
system). The final output brings more information about the system than the traditional 
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chemical, physical or biological indicators. The abstract variables (latent factors, principal 
components) require specific interpretation since a small number of them describe a large 
part of the system variation and in this way reduce its dimensionality and allow its proper 
visualization.  

Cluster analysis  

Exploratory data analysis (just like the PCA) is used dominantly to determine general 
relationships between data [7]. Very often the data treatment procedure has to respond to 
more complex questions about possible similarity between monitoring results or between 
sampling sites, i.e. question about formation of groups within the data set. Cluster analysis 
(CA) is a well developed strategy to determine relationships between different objects of 
observation characterized by various features or, vice versa, between the features describing 
the different objects. In such cases the unsupervised pattern recognition is the tool to solve 
the problem and cluster analysis along with some other methods is used to group different 
objects. CA enables objects stepwise aggregation according to the similarity of their 
features. As a result hierarchically or non-hierarchically ordered clusters are formed.  
A single cluster describes a group of objects that are more similar to each other than to 
objects outside the group. Similarity understood in the term of CA measures how alike two 
cases are. While the term similarity has not unique definitions, it is common to refer to all 
similarity measures as “distance in multi-features space” measures since the same function 
is served. A similarity between two objects i and i’  is a distance if: 

 ' ' ' '( ) 0 where 1 ifi i ii ii i iD D D x x= ≤ = =  (7) 

where xi and xi’  are the row-vectors of the data table X with the features measurements 
describing objects i and i’ . When two or more features are used to define their similarity, 
the one with the largest magnitude dominates. This is why primary standardization of 
features becomes necessary. There are a variety of different measures of inter-cases 
distances and inter-cluster similarities and distances to use as criteria when merging nearest 
clusters into broader groups or when considering the relation of an object to a cluster.  
A few most popular ways of determining how similar interval measured objects are to each 
other are as follows: 
1. Euclidean distance - the distance between two objects xi and xi’  is defined by equation 

(2) where j presents repetition of measurements.  
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2. Squared Euclidean distance - removes the sign and places greater emphasis on objects 
further apart, thus increasing the effect of outliers. 
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3. Manhattan distance (city-block distance, block distance) is the average absolute 
difference across the two or more dimensions which are used to define distance.  
The Manhattan distance is defined slightly differently to the Euclidean distance. Except 
for some specific cases when Manhattan distance is equal to Euclidean distance, it is 
always higher than Euclidean distance. 
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4. Chebychev distance is the maximum absolute difference between a pair of cases on 
any one of the two or more dimensions (features) which are being used to define 
distance. Pairs will be defined as different according to their difference on a single 
dimension, ignoring their similarity on the remaining dimensions. 

 
'( , ) 'max

i ix x i id x x= −  (11) 

5. Mahalanobis distance takes into account that some features may be correlated and so 
defines roughly the same object’s properties (C is the variance-covariance matrix of 
the features). 

 ( ) ( )1
' ' ' 'i i i i i id x x C x x−= − ⋅ −  (12) 

6. Minkowski distance should be applied if the object weight is increasing related to the 
dimensions in each compared objects and indicates the lowest similarity. 
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7. Pearson correlation is based on correlation coefficient. Since for Pearson correlation, 
high negative as well as high positive values indicate similarity, the researchers usually 
select absolute values. 
There are several other related distance measures (weighted Euclidean distance, 

standardized Euclidean distance, cosine, customized, etc.) but usually specific reasons are 
required if a very sophisticated distance measure is to be applied.  

In case of CA one task is related with determination of similarity between measured 
objects, but equally important is to define how objects or clusters are combined at each step 
of similarity assessment procedure. One possibility for clustering objects is their 
hierarchical aggregation. In this case the objects are combined according to their distances 
from or similarities to each other. Within hierarchical aggregation agglomerative and 
divisive methods can be distinguished. Divisive clustering is based on splitting the whole 
set of objects into individual clusters, while in case of more frequently used agglomerative 
clustering one starts with single objects and gradually merges them in broader groups. 
Usually some objects create one broader group, while rest of them creates the other. As in 
case of distance measure various algorithms (linkage techniques) are available to decide on 
the number of clusters. They result in slightly different clustering pattern. A few most 
popular linkage algorithms are: 
1. Nearest neighbor (single linkage) - the distance between two clusters is the distance 

between their closest neighboring objects, in other words the similarity of the new 
group from all other groups is given by the highest similarity of either of the original 
objects to each other object.  
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where: m - new object or cluster, i’, i, j - clustered before objects.  
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This algorithm performs well when the plotted clusters are elongated or chain-like, 
moreover the sizes of the clusters and their weights are presumed to be equal. 
2. Furthest neighbor (complete linkage) - the distance between two clusters is the 

distance between their furthest member objects. Furthest neighbor algorithm of linkage 
refers only to the calculation of similarity measures after new clusters are formed, and 
the two clusters (or objects) with highest similarity are always joined first.  
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This algorithm works well when the plotted clusters form distinct clumps (not 
elongated chains). Application of the procedure presented above leads to well separated, 
small compact spherical clusters. 
3. Average linkage - the distance between two clusters is the average distance between all 

inter-cluster pairs. There are two possible ways of calculating average linkage 
algorithm: non weighted and weighted, according to the size of each group being 
compared (n). When the clusters’ size is equal both algorithms give identical results. 
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Applying weighted average linkage algorithm causes no deformation of the clusters. 
To some extent small clusters consisting of outliers might arise.  
4. Ward’s method is a minimum distance hierarchical method which calculates the sum of 

squared Euclidean distances from each case in a cluster to the mean of all variables. 
The cluster to be merged is the one which will increase the sum the least. Thus, this 
method minimizes the sum of squares of any pair of clusters to be formed at a given 
step. 
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5. Centroid linkage is calculated as the average of a cluster is applied as the basis for 
aggregation without distorting the cluster space. 
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6. Median linkage is calculated as the median of a cluster is applied as the basis for 
aggregation without distorting the cluster space. 
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An advantage of median linkage algorithm lies in preserving the importance of a small 
cluster after aggregation with a large one.  

There are numerous additional linkage algorithms (correlation of items, binary 
matching, etc.), but it would be rare that a researcher needs to apply too many combination 
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of distance and linkage measures, however comparing of many approaches may be a way of 
clustering pattern validation. 

In hierarchical agglomerative clustering the graphical output of the analysis is usually  
a dendrogram - a tree-like graphics, which indicates the linkage between the clustered 
objects with respect to their similarity (distance measure). Decision about the number of 
statistically significant clusters could be made for different reasons. Often a fixed number 
of clusters is to be assumed. Sometimes a distance measure or an allowed difference 
between clusters (classes) is used for evaluating the number of significant clusters.  
For practical reasons the Sneath’s index of cluster significance is widely used. It represents 
this significance on two levels of distance measure D/Dmax relation: 1/3Dmax and 2/3Dmax. 
Only clusters remaining compact after breaking the linkage at these two distances are 
considered significant and are object of interpretation. 

The algorithms for non-hierarchical clustering offer the division of the studied objects 
into a priori given number of clusters (determined by some practical or theoretical reasons). 

In principle, the data set could be considered as a matrix consisting of rows (the 
objects) and columns (the features describing the objects). CA makes it possible to classify 
both the objects and variables. This is very important from practical point of view because 
in environmetric studies it is very interesting to get information on relationships between 
the sampling locations and between the monitoring parameters. The whole idea of risk 
assessment is based actually on estimation of relationship between monitoring features 
(variables). 

Specific goal of the cluster analysis is not only to classify data in a certain way but to 
detect and visualize the reasons for grouping, e.g. to detect those features which are 
responsible for the organization of the objects into different structures. With the application 
of CA an “optimization” of the data is achieved before starting a more detailed data 
analysis. This way of clustering finds groups of objects or features spontaneously without 
need of a preliminary training set or preliminary information about the system in 
consideration.  

Let assume that we have n objects, which have to be clustered by the values of  
m features (variables). The input data matrix X [n × m] is: 

� = 	
�� 
��
�� 
�� … 
��… 
��… …
�� 
�� 
�� …… 
��� 

Each object could be presented by the vector Хi, called object vector i. The final aim is 
grouping of all n objects according to their features.   

As already mentioned above the calculation of a similarity measure is a substantial part 
of the clustering algorithm. The graphical presentation of the determination of a distance of 
similarity between two objects О1 and О2  located in the space of two features x and y could 
be found in Figure 1 (Euclidean distance). This distance could be calculated using the 
Pythagoras theorem 

 ( ) ( ) ( )2 2

1 2 1 2 1 2,d O O y y x x= − + −  (21) 
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Fig. 1. Euclidean distance between two objects 

d(Oi, Ok) is the Euclidean distance and could be easily summarized for m features for 
each couple of objects Oi and Ok: 
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This is only a partial case from the more general Minkowski distance shown above: 
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where  is a special parameter with values: 
• = 1 - the absolute distance between the objects d(1,2) = a + b,  
• = 2 - Euclidean distance, 
• > 2 - in this situation objects - outliers could be determined. 

The choice of similarity measure is an obligation and privilege for the chemometrician 
In most of the situations the Euclidean distances detect better differences between the 
objects, since the correlation distances are preferred for finding objects similarities.   

The determination of the similarity requires transformation of the raw input data  
due to: 
• features are measured in different scales,  
• features have different dimensions (orders of magnitude), 
• features have different variation. 

C
C
C
C
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Unwanted declination of the data structure are avoided by the use of different 
transformations and scaling procedures and the most sound of them is so called autoscaling 
(z-transform): 
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normally distributed with mean value 0 and variation 1. 

From zij values the Euclidean distances are calculated forming the similarity matrix D. 
This (n×n) matrix is symmetrical with zeros along the main diagonal:  
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After determination of the distances of similarity, the linkage algorithm has to be 
chosen and one of the most representative graphical plots for the hierarchical agglomerative 
linkage is the dendrogram. 

In most of the environmental studies the agglomerative hierarchical methods are 
widely used. However, the different linkage algorithms could produce different 
classification results. Since the correct interpretation of the clustering is the main goal of 
the studies, it is important to have comparison of the mostly used linkage algorithms. 

The scheme offered by Lance and Williams describes comparatively the different 
linkage options. Let us assume that between the objects i1 and i2 the highest level of 
similarity exists. The distances between the newly formed cluster i12 and the rest of the 
groups (clusters) could be expressed in the following way: 

 ( )12 1 1, 2 2, 1, 2 1, 2,, i k i k i i i k i kd i k d d d d dα α β γ= + + + −  (25) 

where: α1 - the relative weight of the distance between i1 and a certain object (cluster),  
α2 - the relative weight of the distance between i2 and a certain object (cluster), β - the 
relative weight of the distance between i1 and i2, γ - the relative weight of the distance 
between i1 and i2 and a certain object (cluster). 

In Table 1 the most applied linkage algorithms are presented by combination of the 
parameters α, β, and γ. 

 
Table 1 

Linkage algorithms in cluster analysis 

Algorithm α1 α2 β γ Distance Result 

Average linkage 0.5 0.5 0 0 ( )1, 2,

1

2 i k i kd d+  Average clusters 

Single linkage 0.5 0.5 0 –0.5 ( )1, 2,min i k i kd d+  Big clusters 

Complete linkage 0.5 0.5 0 0.5 ( )1, 2,max i k i kd d+  Small clusters 

Ward’s method f1(n*) f1(n*) f1(n*) 0 depending on  n* Balanced clusters 
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From all these algorithms only the method of Ward uses “a posteriori” criterion. Using 
the heterogeneity of the system expressed by f (n*), one can decide if a certain object joins  
a given cluster or not.   

The use of fuzzy logic in cluster analysis has created many hierarchical and  
non-hierarchical algorithms called  fuzzy clustering. 

Let us assume that a set of objects E with classification structure (C1, C2, … CK) is 
available. The standard approaches under the convention “hard clustering” suppose that 
each object of E belongs exactly to a certain cluster CK. However, the practical application 
of cluster analysis often leads to another output. A certain object could be associated to 
greater or lower extent to several clusters simultaneously. That is why in fuzzy clustering 
the measure tik is introduced, which presents the level of association of object i to cluster CK 
and can accept all possible values within the interval [0,1]: 

 0 ≤ tik ≤ 1 

Thus, for each object that does not belong entirely to one single cluster several values 
of tik bigger than zero could be found and for them the following condition is fulfilled: 

 
1

1
K

ik
i

t
=

=  where: i = 1,2,…,n  (26) 

The definition of the membership of each object to each cluster is given by a vector 
consisting of tik values: 

 ( )1 2, , ,i i i ikt t t t=
�

…  (27) 

Fuzzy clustering aims the determination of the membership function for each object 
and, in such a way, achieving a more reliable “soft clustering” of the object, giving 
different options for belonging to one or another cluster. 

The classification of the objects or the features of a system using cluster analysis could 
solve the following problems: 
• detection of data structure, 
• detection of factors responsible for this structure, 
• which of the objects are accordingly grouped and could participate in creation in 

intergroup model, 
• which features adequately describe the objects and phenomena studied, 
• projection of the multivariate data on plane and construction of respective graphical 

image. 

Principal components regression 

In case of many studies related to natural ecosystems PCA and other multivariate 
statistical techniques are used to determine possible natural or anthropogenic influences in 
the formation of the determinants total mass. However, PCA does not provide a direct 
balancing and apportionment. After the pollution sources identification by the application 
of PCA, the next calculation step in modelling and balancing of pollution impacts is the 
apportioning itself. It is performed mostly by absolute principal components analysis 
(APCA). The procedure introduced by Thurston and Spengler is well developed and often 
applied for apportionment purposes, mainly in apportionment of airborne particulate matter. 
However, recent applications of the approach proved its effectiveness in apportionment 
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monitoring studies for other environmental compartments like surface water, soils, 
sediments, and biota.  

The first step in the source apportionment methodology of Thurston and Spengler [8] 
performing of principal components analysis. As already described the input monitoring 
data are transformed into a dimensionless standardized form, mostly by z-transform. It is 
important to note at the outset that, for multivariate analyses such as proposed, sufficient 
degree of freedom should be available in the model. Thus, the dataset employed must have 
many more observations m (cases, objects) than variables n (features, parameters). If stable 
results are to be derived an empirical rule recommends m ≥ n + 50.  

The PCA assumes that the total concentration of each element is made up of the sum of 
elemental contributions from each of f pollution source components. Hence 

 Zik = ∑ Wij Pjk   (for j = 1…p) (28) 

where Pjk is the jth component’s value for observation k; j = 1,…,p is the number of 
pollution sources influencing the data and Wij is the coefficient matrix of the components. 

This equation may be inverted, yielding (in matrix terms) 

 [P] jxk = [B] jxi [Z] ixk (29) 

where  

 [B] jxi = [W] jxi/λj (30) 

where λj is the eigenvalue associated with Pj. 
The PC scoring matrix [B] is derived so that the first principal component PC1 

explains as large a per cent of the original variables’ total variance as possible.  
The coefficients for the second principal component PC2 are, in turn, chosen so that it 
explains as large a per cent of the remaining variance in the original variables  
(i.e. not explained by PC1), subject to the restriction than PC1 and PC2 are uncorrelated.  
In general, the coefficients for PC(j) are chosen so that PC(j) explains as much of the 
remaining variance (i.e. not explained by PC1 – PC(j–1)), subject to the constraint that PC(j) 
be uncorrelated with the previous PCs. 

The PC equation coefficients [B] are mathematically derived from the correlation 
matrix 

 [R] ixi = [Z] ixi [Z] t
ixi

  (31) 

 
Since the objective of PCA is to find orthogonal (uncorrelated) components, the 

correlation matrix [R] is diagonalized. The diagonalization finds a matrix Q such that 

 [Q–1] ixi [R] ixi [Q] ixi = [Λ] ixi (32) 

where [Λ] is a diagonal matrix (i.e. a matrix with no off diagonal cross-correlation terms) of 
eigenvalues arranged in descending order of magnitude and Q contains the corresponding 
eigenvectors which diagonalize the correlation matrix. By definition, these eigenvectors are 
the matrix [B], which can be used to derive the PC score matrix [P] from the [Z] matrix.  

The primary objective of applying PCA is to derive a small number of components 
which explain a maximum of the variance in the data. Initially, the PCA results in as many 
PCs as there are original variables n. Usually, however, only a limited number of these 
uncorrelated PCs (e.g. five or six) are required to explain virtually all of the variance  
in a data set of fifteen or more original (intercorrelated) variables. In order for this 
reduction in the dimensionality to be useful, the new variables (components, latent factors) 
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must have simple substantive interpretations. Empirically, it has been found that unrotated 
PCs are often not readily interpretable since they each attempt to explain all remaining 
variance in the data set. This calculation results in a number of sources of variance being 
grouped together. For this reason, a limited number of components (p < n) are usually 
subjected to rotation using a criteria such as varimax. After PCA rotation, the resulting 
components have been found to often be more representative of individual underlying 
sources of variation. This, in turn, results in more interpretable and useful PCs 
corresponding, for instance, to different sources of pollution like oil combustion, vehicle 
emissions, soil dust etc.  

The first step in the derivation of source impacts is to calculate component scores for 
each sample (object). Rotated PC coefficients, B*, are calculated by applying the rotation 
transformation matrix [T] to [B] 

 [B]*
pxn  = [B]pxn [T]nxn (33) 

Rotated PC scores are computed using the transformed [B] matrix 

 [P]*
pxm = [B]*

pxn  [Z]nxm (34) 

These PC scores are correlated with their respective pollution source impacting the site 
(i.e. a higher component score P*

jk implies a higher pollution impact by the pollution source 
j during observation k). However, because they are computed from the normalized 
elemental concentrations Zik, they too are normalized. Each component indicates deviations 
from the mean source impacts; they are not proportional to these pollution impacts. 

It has been shown that the regression of a dependent variable Yk on the daily scores of 
components Pjk could be presented by the formula 

 Yk = Ya +∑ζj Pjk    (for j = 1…p) (35) 

where Ya equals the mean of Yk. If the dependent variable Yk  is the total mass (for air 
particulate matter, in [μg m–3]), then ζj are the conversion coefficients of the non-
dimensional PC score deviations into mass deviations from the mean source impact. Since 
the components are not scored as deviations from zero, but instead as deviations from the 
mean, this results in the presence of Ya in the equation. This, in turn, prevents a direct 
apportionment of the total particle mass at the sampling site to the normalized pollution 
source components. 

Different studies have addressed the problem of deriving components related to 
absolute zero by initializing a correlation about the origin (instead of about the mean) and 
normalizing the data to the mean of all elements in each sample (Q analysis) instead of to 
the mean of all samples for each element (R analysis). This allowed retention of the 
information regarding the relative size of each element in absolute terms (i.e. distance from 
zero). The resultant vectors ware then target transformed to align (to a least square fit) with 
known pollution source element profile vectors. Another approach attempted to target 
factors to assumed single element trace compositions, but the data employed were very 
limited. These techniques of target transformation factor analysis (TTFA) are not readily 
executed with conventional statistical packages, which do not provide for target rotations. 

The already classical approach of Thurston and Spengler offers a simple PCA pollution 
apportionment procedure which can be executed on conventional, generally available 
statistical packages such as STATISTICA. The PCA is conducted using a conventional  
R analysis of elemental concentrations about their means.  
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As the factor scores obtained from PCA are normalized, with mean zero and standard 
deviation equal to unity, the true zero for each factor score is calculated by introducing  
an artificial sample with concentration equal to zero for all variables. 

 0

(0 )
( ) i i

i
i i

C C
Z

s s

−
= = −  (36) 

where: Ci - arithmetic mean concentration of analyte i (understood as feature), si - standard 
deviation of variable i. 

Then the rotated absolute zero PC scores, P*
0 for each of p components are calculated 

 P*
0p = ∑B*

pi(Z0)I  (for i = 1…n) (37) 

These estimates of the PC scores for each component at absolute zero are then used to 
estimate Absolute PC Scores [APCS] for each component on each sampling day as follows: 

 [APCS]*
pxj = [P]*

pxj – [P0]
*
pxj (38) 

where the j columns of [P0]
* are all identically equal to the values calculated for P0p

*. It can 
be proved in a straight forward manner that the calculation for [APCS]* gives the exact 
score which would be achieved had the original scoring been executed using unnormalized 
data. 

Regressing (multiple linear regression) the monitoring results on these APCS give 
estimates of the coefficients which convert the APCS into pollutant source mass 
contributions [μg m–3] from each source for each sample. 

The source contributions to Ci can be calculated by mentioned above linear regression 
procedure according to the following: 

 0( ) , 1,2,...,i i p piC b APCS b p n= + ⋅ =  (39) 

where: (b0)i - constant term of multiple regression for variable i, bpi - the coefficient of 
multiple regression of the source p for variable i, APCSp - scaled value of the rotated factor 
p for the considered sample, APCSp·bpi represents the contribution of source p to Ci. 

The mean of the product APCSp·bpi on all samples represents the average contribution 
of the sources. The method estimates source profiles and contributions but its serious 
disadvantage is error propagation in centering and uncentering of data. This balancing 
approach accepts that all sources have been identified by the principal components analysis 
and all of them participate in the source contribution procedure. 

N-way principal components analysis 

Most common chemometric techniques are performed using two-way data sets, often 
presented in the form of matrices. However, due to increasing interest of handling of  
three-way data matrices three-dimensional analogies to two-dimensional techniques are 
required. For example, a two-dimensional PCA has its analogue in the form of Tucker3 
model [9]. The generality of the Tucker3 model, had made it an often used model for 
decomposition, compression and interpretation in many applications. The use of multiway 
models provides a better insight into the data structure, reduces the noise, and shows which 
of the original variables are correlated and which of them are most significant for a certain 
environmental problem description. It should be emphasized at this point that the most 
typical environmental data sets have the following form of a three-dimensional  
(three-mode) matrix: sampling sites x variables x time, but examples in which two separate 
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modes of the data array are formed by the time dimension are also widely known  
(e.g. months, years). Tucker3 model involves calculating weight matrices corresponding to 
each of the three modes and is one of the most basic-multi way models used in 
environmetrics. The model is defined by the decomposition of a three-way matrix X into  
a three-way core matrix Z and three two-way loading matrices A, B, C (one for each mode): 

 
1 1 1

L M N

ijk il jm kn lmn ijk
l m n

x a b c z e
= = =

≈ +  (40) 

where eijk represents the residual error term (graphical example of decomposition realized 
by Tucker3 model is presented in Figure 2).  

 

 
Fig. 2. Tucker3 decomposition model 

Tucker3 algorithm delivers a set off possible solutions which mean large number 
combination of possible models with different complexities. To select a model with an 
optimal complexity, the variance of each combination of model complexities starting from 
the model with the lowest number of factor in each mode, to model with the highest 
complexity should be evaluated. Most often, the optimal model is the one with possibly the 
smallest number of factors in each of the modes but explaining a large part of data variance. 
In practice, a trade-off between both requirements is needed. At the same time, a set of 
possible Tucker3 models should be validated, e.g. using cross-validation procedure.  
The cross-validation is performed in such a way that part of the data are set to missing, the 
models are fitted to the remaining data, and the residuals between fitted and true left out 
elements are calculated. 

Self-organizing maps (SOM) 

The Self-organizing map (SOM) algorithm has been proposed by Kohonen [10] in 
1980. It is a neural-network based model which shares, with the conventional ordination 
methods, the basic idea of displaying a high-dimensional signal manifold onto a much 
lower dimensional network in an orderly fashion (usually 2D space). The SOM is  
a competitive learning algorithm based on unsupervised learning process. This advantage 
causes no researcher intervention is required during the learning process and that little 
needs to be known about the characteristics of the input data. In the SOM algorithm, the 
topological relations and the number of neurons (nodes) organized on a regular  
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low-dimensional grid are fixed from the very beginning. The number of neurons may vary 
from a few dozen up to several thousand. Because for SOM algorithm there are no precise 
rules for the choice of the various, primary defined parameters, the most common shape of 
the Kohonen map is a rectangular grid with the number of hexagonal nodes (n) determined 
using following equation: 

 5n number of cases= ⋅  (41) 

Basically, the two largest eigenvalues of the training data are calculated and the ratio 
between side lengths of the map grid is set to the ratio between the two maximum 
eigenvalues. The actual side lengths are then set so that their product is close to the 
determined number of map units as stated above. Hexagonal lattice is preferred because it 
does not favor horizontal or vertical direction. Each neutron i is represented by  
a d-dimensional weight vector (called also prototype vector or codebook vector)  
m = [mi,…,md], where d is equal to the dimension of the input vectors. The neurons are 
connected to adjacent neurons by a neighborhood relation, which dictates the topology, or 
structure of the Kohonen map and, thus, similar objects should be mapped close together on 
the grid. After primary initialization, the weight vectors are characterized by random values 
and then SOM is trained iteratively with one of two possible algorithms: sequential or 
batch. A sequential training algorithm (STA) constructs the nodes in a SOM in order to 
represent the whole data set and their weights are optimized at each iteration step. In each 
step, one sample vector x from the input data set is chosen randomly and the distances 
between it and all the weight vectors of the SOM are calculated using some distance 
measure, e.g. Euclidean distance, squared Euclidean distance, Mahalanobis distance etc., 
thus, the optimal topology is expected. Node c, whose weight vector (m) is closest to the 
input vector x is called the best matching unit (BMU):  

 { }minc i
i

x m x m− = −  (42) 

where is a distance measure (typically Euclidean distance). If missing data appears, 

they are handled by simply excluding them from the distance calculation  

(e.g. it is assumed that their contribution to the distance ix m− is zero). Because, the same 

missing value is ignored in each distance calculation (over which the minimum is taken), 
this is a valid solution. After finding the BMU, the weight vectors are updated in agreement 
with presented below update rule, so that the BMU is moved closer to the input vector.  
The topological neighbors of the BMU are moved closer too because of their mutual 
connection.  

 ( 1) ( ) ( ) ( )[ ( ) ( )]i i ci im t m t t h t x t m tα+ = + −  (43) 

where: t - time, m(t) - weight vector indicating the output unit’s location in the space at time 
t, α(t) - learning rate at time t, hci - neighborhood non-increasing function centered in the 
winner unit c at the time t, x(t) - input vector randomly drawn from the input data set at 
time t.  

The sequential training algorithm is usually performed in two phases. In the first phase, 
relatively large initial learning rate α(t = 0) and neighborhood radius σ0 are used.  
In the second phase both learning rate and neighborhood radius become smaller.  
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The second possible training algorithm is called batch training algorithm (BTA), 
because instead of using a single data vector at a time, the whole data set is presented to the 
map before any adjustments are made. In each training step, the data set is partitioned to the 
Voronoi regions of the map weight vectors (e.g. each data vector belongs to the data set of 
the map unit to which it is closest). After that, the new weight vectors are calculated as 
shown in the following equation: 

 1
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+ =

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 (44) 

where { }argmink j kc x m=  is the index of the BMU of data sample xj. 

The new weight vector is a weighted average of the data samples, where the weight of 
each data sample is the neighborhood function value hic(t) at its BMU c. Analogous to 
sequential training algorithm missing values are ignored in calculating the weighted 
average. The quality of mapping can be quantitatively measured with the quantization error 
(QE) and the topographic error (TE). After competitive learning process, SOM algorithm 
enables graphical presentation of results in the form of set of maps (features’ planes) and 
accomplishment of clustering tasks as well. Features’ planes can be considered as a sliced 
version of the SOM map and provide a powerful tool to analyze the community structure. 
When a plenty of features is considered it is difficult to compare all maps for all features 
and thus becomes necessary to find similarity between them, and simultaneously, in the 
cases’ space and classify them into clusters. Input features’ planes (e.g. variables) could be 
visualized on a summary SOM map (called also as unified distance matrix or U-matrix) to 
show the contribution of each feature in the self-organization of the map. U-matrix 
visualizes distances between neighboring map units, and helps to identify cluster structure 
of the map: high values of the U-matrix indicates a cluster border, uniform areas of low 
values indicate clusters themselves, while each feature’s plane shows the values of one 
feature in each map unit. In other words U-matrix expresses semi-quantitative information 
about the distribution of a complete set of features for a complete set of the cases while 
separate feature’s plane visualizes distribution of a given feature for a complete set of the 
cases. Because of this, U-matrix joined with features’ planes can be effectively applied for 
assessment of inter-features and inter-cases relations. According to clustering task, one of 
the most commonly applied algorithm is non-hierarchical K-means clustering algorithm.  
In this case, different values of k (predefined number of clusters) are tried and the sum of 
squares for each run is calculated. Finally, the best classification with the lowest  
Davies-Bouldin index should be chosen (it is a function of the ratio of the sum  
of within-cluster scatter and between-cluster separation). 

The SOM is an algorithm used to visualize and interpret large high-dimensional data 
sets SOM is unsupervised pattern cognition method similarly to cluster analysis. The main 
advantage of SOM is the simultaneous classification of variables and objects (sampling 
locations). Typical applications are visualization of process states or financial results  
by representing the central dependencies within the data on the map. The map consists  
of a regular grid of processing units.  

A model of some multidimensional observation, eventually a vector consisting of 
features (variables), is associated with each unit. The map attempts to represent all available 
observations with optimal accuracy using a restricted set of models. At the same time the 
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models become ordered on the grid so that similar models are close to each other and 
dissimilar models far from each other. Fitting of the model vectors is usually carried out by 
a sequential regression process, where t = 1, 2,... is the step index: For each sample x(t), 
first the winner index c (best matching unit - BMU, Fig. 3) is identified by the already 
mentioned condition: 

 , ( ) ( ) ( ) ( )c ii x t m t x t m t∀ − ≤ −  (45) 

 

 
Fig. 3. Self-organizing map architecture 

After finding the BMU, the weight vectors of the SOM are updated so that the BMU is 
moved closer to the input vector in the input space (Fig. 4). 

 

 
Fig. 4. Updating the BMU and its neighbors towards the input object 
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Then, all model vectors or a subset of them that belong to nodes centered on node  
c = c(x) are updated as: 

 ( ),( 1) ( ) ( ( ) ( ))i i c x i im t m t h x t m t+ = + −  (46) 

Here hc(x),i is the ”neighborhood function”, a decreasing function of the distance 
between the ith and cth nodes on the map grid. This regression is usually reiterated over the 
available objects.  

The trained map could be graphically presented by 2D planes for each variable 
indicating variable distribution values on the different map regions by different colors. 
Additionally the node “coordinates” (vectors) could be clustered by non-hierarchical  
K-means classification algorithm. Main advantages of SOM algorithm application are:  
(i) the projection of variables similarity in the form of features’ planes delivers  

semi-quantitative information about the distribution of a given feature in the space of 
the cases, 

(ii)  SOM visualization enables presentation both similarity between positive as well as 
negative correlated features, 

(iii)  SOM visualization and SOM-supported classification is able to indicate “outliers”  
e.g. those features or cases which do not belong to a well-organized, homogeneous 
populations, 

(iv)  SOM is noise tolerant (this property is highly desirable when site-measured data are 
used).  

Partial least squares regression 

Partial least squares (PLS) regression [11] is often presented as the major regression 
technique for multivariate data. In fact its use is not always justified by the data, and the 
originators of the method were well aware of this, but in some applications PLS has been 
spectacularly successful. In spectroscopy or chromatography we usually expect linear 
additivity, and this is especially important for chemical instrumental data, and under such 
circumstances simpler methods such as multiple linear regression (MLR) are often useful, 
especially when the system in consideration is well known. However, PLS is always  
an important tool when there is partial knowledge of the data, e.g. NIR spectroscopic 
measurements of wheat protein. A model can be obtained from a series of wheat samples, 
and PLS will use typical features in this data set to establish a relationship to the known 
amount of protein. PLS models can be very robust provided that future samples contain 
similar features to the original data, but the predictions are essentially statistical. 

The most wide spread approach is often called PLS1. Although there are several 
algorithms, the main ones due to Wold and Martens, the overall principles are quite 
straightforward. Instead of modelling exclusively the x variables, two sets of models are 
obtained: 

 X = T · P + E (47) 

 c = T · q + f  (48) 

where q has analogies to a loadings vector, although is not normalized. The product of T 
and P approximates to specific data (e.g. spectral data) and the product of T and q to the 
true outputs (e.g. concentrations); the common link is T. An important feature of PLS is 
that it is possible to obtain a scores matrix that is common to both the concentrations (c) 
and measurements (x). It has to be stressed that T and P for PLS are different to T and P 



Basic multivariate statistical methods for environmental monitoring data mining: Introductory course … 

 

55

obtained in PCA, and unique sets of scores and loadings are obtained for each compound in 
the data set. Hence if there are 10 compounds of interest, there will be 10 sets of T, P and q. 
In this way PLS differs from PCR in which there is only one set of T and P.  

For an imaginary data set consisting of 25 spectra observed at 27 wavelengths, for 
which 8 PLS components are calculated, there will be: 
• a T matrix of dimensions 25 x 8, 
• a P matrix of dimensions 8 x 27, 
• an E matrix of dimensions 25 x 27, 
• a q vector of dimensions 8 x 1, 
• an  f vector of dimensions 25 x 1. 

Each successive PLS component approximates both the concentration and spectral data 
better. For each PLS component, there will be a: 
• scores vector t, 
• spectral loadings vector p, 
• concentration loadings scalar q. 

In most of PLS implementations it is conventional to center both the x and c data by 
subtracting the mean of each column before analysis. Not always this procedure is needed. 

For a given compound, the remaining percentage error in the x matrix for a PLS 
components can be expressed in a variety of ways. The predicted measurements simply 
involve calculating Xc = T ·  P. The only difference is that each compound generates  
a separate scores matrix, unlike PCR where there is a single scores matrix for all 
compounds in the system and so there will be a different behavior in the x block residuals 
according to the compound. 

An extension to PLS1 is often called PLS2; the latter allows the use of a concentration 
matrix C rather than concentration vectors for each individual compound in the system and 
the algorithm is iterative. The equations for PLS2 differ slightly in that Q is a matrix  
(not a vector), so that: 

 X = T · P + E (49) 

 C = T · Q + F (50) 

The number of columns in C and Q are equal to the number of objects  
(e.g. compounds) of interest. In PLS1 one compound is modelled at a time, whereas in 
PLS2 all known compounds can be simultaneously included in the model. 

Conclusion 

The presented lecture is dedicated to master students but could be of use for any 
student interested in data mining approaches. In the references some major textbook are 
given and each one of them could be source of additional information on the theory and 
application of chemometrics and environmetrics for data interpretation and modelling. 
Additional small selection of applications of exploratory data analysis are offered for 
individual work and seminars [12-17]. 
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