PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wykorzystanie w przemyśle cyklów termochemicznego rozkładu wody w produkcji niskoemisyjnego wodoru

Identyfikatory
Warianty tytułu
EN
Application of the thermochemical water splitting cycles in the low-emission hydrogen production
Języki publikacji
PL
Abstrakty
PL
W artykule porównano trzy najbardziej obiecujące cykle termochemicznego rozkładu wody do produkcji niskoemisyjnego wodoru, które wykazują potencjalne zastosowanie w procesach przemysłowych. Cykle te charakteryzują się wysoką sprawnością energetyczną produkcji wodoru, stosunkowo niskimi kosztami produkcji wodoru, a dodatkowo wykazują dużą elastyczność w wykorzystaniu energii elektrycznej i ciepła w procesach rozkładu wody. Wyzwaniami we wdrożeniu tych rozwiązań są stosunkowo niewielka dojrzałość technologiczna, korozja materiałów oraz optymalizacja procesów.
EN
The work compares the three most promising thermochemical water splitting cycles for the production of low-emission hydrogen, which show potential application in industrial processes. These cycles are characterized by high energy efficiency of hydrogen production, relatively low costs of hydrogen production, and additionally show high flexibility in the use of electricity and heat in water splitting processes. Challenges in implementing these solutions include relatively low technological maturity, corrosion of materials and process optimization.
Czasopismo
Rocznik
Tom
Strony
313--316
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Instytut Energetyki - Państwowy Instytut Badawczy
Bibliografia
  • [1] IPCC. Climate Change 2022 - Mitigation of Climate Change - Full Report. 2022.
  • [2] Delbeke J., Runge-Metzger A., Slingenberg Y, Werksman J., The paris agreement. 2019. https://doi.org/10.4324/9789276082569-2.
  • [3] European Commision. Delivering the European Green Deal. The Decisive decate. 2021.
  • [4] European Commission. European Commission-Press release REPowerEU. Joint European action for more affordable, secure and sustainable energy. Brussels 2022.
  • [5] Cembureau. Cementing the European Green Deal, Reaching climate neutrality along the cement and concrete value chain by 2050. Eur Cem Assoc Brussels 2020, 1-38.
  • [6] European Commission. Leading the clean industrial revolution. Brussels 2021.
  • [7] Cerame-Unie A.I.S.B.L. Paving the way to 2050. The ceramic industry roadmap. 2012.
  • [8] The Europen Steel Association. Low carbon roadmap: Pathways to a CO2-neutral European steel industry - The European Steel Association. Brussels 2019.
  • [9] Fernandez A., Leung Y., Technology roadmap for cement. Low-Carbon Transition in the Cement Industry. 2018.
  • [10] Mineral Products Association Cement. UK Cement Industry 2050 Greenhouse Gas Strategy. London 2013.
  • [11] European Aluminium Association. Circular Aluminium Action Plan. A Strategy for Achieving Aluminium's Full Potential for Circular Economy By 2030. Brussels 2020.
  • [12] International Fertilizer Association. The SDGs and Sustainable Fertilizer Production. Paris 2020.
  • [13] Norwegian Ministry of Petroleum and Energy Norwegian Ministry of Climate and Environment. The Norwegian Government's Hydrogen Strategy. 2012.
  • [14] COAG Energy Council Hydrogen Working Group. Australia's National Hydrogen Strategy. 2019.
  • [15] NRCan. Hydogen Strategy for Canada. 2020.
  • [16] HM Government. UK hydrogen strategy. 2021. https://doi.org/10.1002/cind.859_6.x.
  • [17] Ministry of Climate and Environment. Polish Hydrogen Strategy until 2030 with an outlook until 2040. Warsaw 2021.
  • [18] FOD Economie. Vision and Strategy Hydrogen. Brussels 2022.
  • [19] Department of Energy US. DOE National Clean Hydrogen Strategy and Roadmap - Draft. 2022.
  • [20] EU Monitor. A hydrogen strategy for a climate-neutral Europe. vol. 53. Brussels 2020.
  • [21] Hydrogen Europe. Clean Hydrogen Monitor. 2022.
  • [22] Comission delegated regulation (EU) 2021/2139. 2021.
  • [23] Tchorek G., Łańcuch wartości gospodarki wodorowej w Polsce. Warszawa 2023.
  • [24] Wong B., Buckingham R.T., Brown L.C., Russ B.E., Besenbruch G.E., Kaiparambil A. et al. Construction materials development in sulfur-iodine thermochemical water-splitting process for hydrogen production. „Int. J. Hydrogen Energy" 2007, 32, 3497-504. https://doi.Org/10.1016/j.ijhydene.2006.06.058.
  • [25] Nuclear Power Reactors in the World. Vienna, International Atomic Energy Agency, 2021.
  • [26] Chaube A., Ahmed Z., Sieh B., Brooks CS., Bindra H., Nuclear microreactors and thermal integration with hydrogen generation tprocesses. „Nuci Eng Des" 2024, 419, 112968. https://doi.org/10.1016/j.nucengdes.2024.112968.
  • [27] Safari F., Dincer I., A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. „Energy Convers Manag" 2020, 205, 112182. https://doi.org/10.1016/j.enconman.2019.112182.
  • [28] Pinsky R., Sabharwall P., Hartvigsen J., O'Brien J., Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Prog Nucl Energy 2020;123:0-3. https://doi.org/10.1016/j.pnucene.2020.103317
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3107841-0a16-4c1d-81a9-aa9315d0c320
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.