PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Landslide susceptibility assessment in Constantine region (NE Algeria) by means of statistical models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the present study was to compare the prediction performances of three statistical methods, namely, information value (IV), weight of evidence (WoE) and frequency ratio (FR), for landslide susceptibility mapping (LSM) at the east of Constantine region. A detailed landslide inventory of the study area with a total of 81 landslide locations was compiled from aerial photographs, satellite images and field surveys. This landslide inventory was randomly split into a testing dataset (70%) for training the models, and the remaining (30%) was used for validation purpose. Nine landslide-related factors such as slope gradient, slope aspect, elevation, distance to streams, lithology, distance to lineaments, precipitation, Normalized Difference Vegetation Index (NDVI) and stream density were used in the landslide susceptibility analyses. The inventory was adopted to analyse the spatial relationship between these landslide factors and landslide occurrences. Based on IV, WoE and FR approaches, three landslide susceptibility zonation maps were categorized, namely, “very high, high, moderate, low, and very low”. The results were compared and validated by computing area under the receiver operating characteristic (ROC) curve (AUC). From the statistics, it is noted that prediction scores of the FR, IV and WoE models are relatively similar with 73.32%, 73.95% and 79.07%, respectively. However, the map, obtained using the WoE technique, was experienced to be more suitable for the study area. Based on the results, the produced LSM can serve as a reference for planning and decision-making regarding the general use of the land.
Wydawca
Rocznik
Strony
208--219
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Department of Geological Sciences, University of Frères Mentouri-Constantine 1, Postbox 325, Ain El Bey Street, 25017 Constantine, Algeria
  • Department of Geology, Larbi Ben M‘Hidi University, Oum El Bouaghi 04000, Algeria
autor
  • Institute of Urban Technology Management, Constantine 3 University, Algeria
autor
  • Department of Earth Sciences, Institute of Architecture and Earth Sciences, Setif 1 University, Algeria
autor
  • Department of applied biology, Université Frères Mentouri – Constantine 1 BP, 325 Route de Ain El Bey, Constantine, Algérie, 25017
autor
  • Faculty of Geography, Geomorphology-Pedology-Geomatics Department, University of Bucharest, Romania
Bibliografia
  • [1] Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and NF models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350-365.
  • [2] Van Westen, C.J. (2013). Remote sensing and GIS for natural hazards assessment and disaster risk management. In Treatise on Geomorphology, Edited by: Shroder, J., Bishop, MP, Academic Press, San Diego, CA, 3, 259-298.
  • [3] Park, S., Choi, C., Kim, B., Kim, J. (2013). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68(5), 1443-1464.
  • [4] Gadri, L., Hadji, R., Zahri, F., Benghazi, Z., Boumezbeur, A., Laid, B.M., et al. (2015). The quarries edges stability in opencast mines: a case study of the Jebel Onk phosphate mine, NE Algeria. Arabian Journal of Geosciences, 8(11), 8987-8997.
  • [5] Zahri, F., Boukelloul, M.L., Hadji, R., Talhi, K. (2016). Slope stability analysis in open pit mines of Jebel Gustar career, NE Algeria–a multi-steps approach. Mining Science, 23, 137-146.
  • [6] Mokadem, N., Demdoum, A., Hamed, Y., Bouri, S., Hadji, R., Boyce, A., et al. (2016). Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system: Northern Gafsa basin–Central Tunisia. Journal of African Earth Sciences, 114, 174-191.
  • [7] Mouici, R., Baali, F., Hadji, R., Boubaya, D., Audra, P., Fehdi, C., et al. (2017). Geophysical, geotechnical, and speleologic assessment for karst-sinkhole collapse genesis in cheria plateau (NE Algeria). Mining Science, 24.
  • [8] Hamed, Y., Redhaounia, B., Ben Sâad, A., Hadji, R., Zahri, F. (2017). Groundwater inrush caused by the fault reactivation and the climate impact in the mining Gafsa basin (southwestern Tunisia). Journal of Tethys, 5(2), 154-164.
  • [9] Lee, S, and Pradhan, B. (2006). Probabilistic landslide hazard and risk mapping on Penang Island, Malaysia. Journal of Earth System Science, 115, 661-672.
  • [10] Hadji, R., Chouabi, A., Gadri, L., Raïs, K., Hamed, Y., Boumazbeur, A. (2016). Application of linear indexing model and GIS techniques for the slope movement susceptibility modeling in Bousselam upstream basin, Northeast Algeria. Arabian Journal of Geosciences, 9(3), 192.
  • [11] Bougdal, R., Belhai, D., Antoine, P. (2007). Géologie détaillée de la ville de Constantine et ses alentours: une donnée de base pour l’étude des glissements de terrain. Bull ServGéol de l’Algérie, 18(2), 161-187.
  • [12] Bourenane, H., Guettouche, M., Bouhadad, Y. and Braham, M. (2016). Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, information value, logistic regression, weights of evidence, and analytical hierarchy process methods. Arabian Journal of Geosciences, 9(2).
  • [13] Achour, Y., Boumezbeur, A., Hadji, R., Chouabbi, A., Cavaleiro, V., Bendaoud, E.A. (2017). Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arabian Journal of Geosciences, 10(8), 194.
  • [14] Hadji, R., Achour, Y., Hamed, Y. (2017). Using GIS and RS for slope movement susceptibility mapping: comparing AHP, LI and LR methods for the Oued Mellah Basin, NE Algeria. In Euro-Mediterranean Conference for Environmental Integration. Springer, Cham, pp. 1853-1856.
  • [15] Carrara, A., Cardinali, M., Guzzetti, F., Reichenbach, P. (1995). GIS technology in mapping landslide hazard. In Geographical Information Systems in Assessing Natural Hazards. Edited by A. Carrara, F. Guzzetti. Springer, Dordrecht, pp. 135-175.
  • [16] Soeters, R., van Westen, C.J. (1996). Landslides: Investigation and mitigation. Chapter 8-Slope instability recognition, analysis, and zonation. Transportation Research Board Special Report, (247).
  • [17] Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1), 181-216.
  • [18] Sharma, V.K. (2006). Landslide hazard zonation: an overview of emerging techniques. Journal of Engineering Geology, XXXIII, 73-80.
  • [19] Dahoua, L., Yakovitch, S.V., Hadji, R.H. (2017). GIS-based technic for roadside-slope stability assessment: An bivariate approach for A1 East-West highway, North Algeria. Mining Science, 24, 117-127.
  • [20] Bourenane, H., Bouhadad, Y., Guettouche, M., Braham, M. (2014). GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bulletin of Engineering Geology and the Environment, 74(2), 337-355.
  • [21] Pradhan, B., Lee, S. (2010). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60(5), 1037-1054.
  • [22] Yalcin, A., Reis, S., Aydinoglu, A.C., Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3), 274-287.
  • [23] Karim, Z., Hadji, R., Hamed, Y. (2018). GIS-based approaches for the landslide susceptibility prediction in Setif Region (NE Algeria). Geotechnical and Geological Engineering, 1-16.
  • [24] Mahdadi, F., Boumezbeur, A., Hadji, R., Kanungo, D. P., Zahri, F. (2018). GIS-based landslide susceptibility assessment using statistical models: a case study from Souk Ahras province, NE Algeria. Arabian Journal of Geosciences, 11(17), 476.
  • [25] Hadji, R., Limani, Y., Demdoum, A. (2014). Using multivariate approach and GIS applications to predict slope instability hazard case study of Machrouha municipality, NE Algeria. In Information and Communication Technologies for Disaster Management (ICT-DM), 2014 1st International Conference on IEEE, pp. 1-10.
  • [26] Hamad, A., Baali, F., Hadji, R., Zerrouki, H., Besser, H., Mokadem, N., et al. (2018). Hydrogeochemical characterization of water mineralization in Tebessa-Kasserine karst system (Tuniso-Algerian Transboundry basin). Euro-Mediterranean Journal for Environmental Integration, 3(1), 7.
  • [27] Demdoum, A., Hamed, Y., Feki, M., Hadji, R., Djebbar, M. (2015). Multi-tracer investigation of groundwater in El Eulma Basin (northwestern Algeria), North Africa. Arabian Journal of Geosciences, 8(5), 3321-3333.
  • [28] Hamed, Y., Ahmadi, R., Hadji, R., Mokadem, N., Dhia, H. B., Ali, W. (2014). Groundwater evolution of the continental intercalaire aquifer of Southern Tunisia and a part of Southern Algeria: Use of geochemical and isotopic indicators. Desalination and Water Treatment, 52(10-12), 1990-1996.
  • [29] Yilmaz, I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey). Computers & Geosciences, 35(6), 1125-1138.
  • [30] Tseng, C.M., Lin, C.W., Hsieh, W.D. (2015). Landslide susceptibility analysis by means of event-based multi-temporal landslide inventories. Natural Hazards & Earth System Sciences Discussions, 3(2), 1137-1173.
  • [31] Hadji, R., Rais, K., Gadri, L., Chouabi, A., Hamed, Y. (2017). Slope failure characteristics and slope movement susceptibility assessment using GIS in a medium scale: a case study from Ouled Driss and Machroha municipalities, Northeast Algeria. Arabian Journal for Science and Engineering, 42(1), 281-300.
  • [32] Hadji, R., Limani, Y., Boumazbeur, A.E., Demdoum, A., Zighmi, K., Zahri, F., et al. (2014). Climate change and its influence on shrinkage–swelling clays susceptibility in a semi-arid zone: a case study of Souk Ahras municipality, NE-Algeria. Desalination and Water Treatment, 52(10-12), 2057-2072.
  • [33] Hadji, R., Boumazbeur, A., Limani, Y., Baghem, M., el Madjid Chouabi, A., Demdoum, A. (2013). Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quaternary International, 302, 224-237.
  • [34] Hamed, Y., Redhaounia, B., Sâad, A., Hadji, R., Zahri, F., Zighmi, K. (2017). Hydrothermal waters from karst aquifer: Case study of the Trozza basin (Central Tunisia). Journal of Tethys, 5(1), 33-44.
  • [35] Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M. and Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1-4), 272-299.
  • [36] El Mekki, A., Hadji, R., Fehdi, C. (2018) Use of slope failures inventory and climatic data for landslide susceptibility, vulnerability, and risk mapping in Souk Ahras region. Mining Science, 24, 237-249
  • [37] Besser, H., Mokadem, N., Redhaounia, B., Hadji, R., Hamad, A., Hamed, Y. (2018). Groundwater mixing and geochemical assessment of low-enthalpy resources in the geothermal field of southwestern Tunisia. Euro-Mediterranean Journal for Environmental Integration, 3(1), 16.
  • [38] Dahoua, L., Yakovitch, S.V., Hadji, R., Farid, Z. (2017). Landslide susceptibility mapping using analytic hierarchy process method in BBA-Bouira Region, case study of east-west highway, NE Algeria. In Euro-Mediterranean Conference for Environmental Integration. Springer, Cham, pp. 1837-1840.
  • [39] Hamad, A., Hadji, R., Bâali, F., Houda, B., Redhaounia, B., Zighmi, K., et al., (2018). Conceptual model for karstic aquifers by combined analysis of GIS, chemical, thermal, and isotopic tools in Tuniso-Algerian transboundary basin. Arabian Journal of Geosciences, 11(15), 409.
  • [40] Althuwaynee, O.F., Pradhan, B., Lee, S. (2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, 44, 120-135.
  • [41] Lee, S. (2005). Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 7, 1477-1491.
  • [42] Pardeshi, S.D., Autade, S.E., Pardeshi, S.S. (2013). Landslide hazard assessment: recent trends and techniques, Springer Plus, 2, 253.
  • [43] Pradhan, B., Oh, H.J., Buchroithner, M. (2010). Weights-ofevidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomatics, Natural Hazards and Risk, 1(3), 199-223.
  • [44] Lee, S., Choi, J., Min, K., (2004). Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. International Journal of Remote Sensing, 25(11), 2037-2052.
  • [45] Cevik, E., Topal, T. (2003). GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology, 44(8), 949-962.
  • [46] Van Westen, C.J. (1993). Application of geographic information systems to landslide hazard zonation. ITC Publication, vol. 15. International Institute for Aerospace and Earth Resources Survey, Enschede, p. 245.
  • [47] Hamed, Y., Hadji, R., Redhaounia, B., Zighmi, K., Bâali, F., El Gayar, A. (2018). Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterranean Journal for Environmental Integration, 3(1), 25.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d30a21fb-5daa-4286-af34-665eda7d8339
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.