PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Co-pyrolysis of PCB and cotton stalk: Towards enhanced phenol production and debromination of pyrolysis oil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
The International Chemical Engineering Conference 2021 (ICHEEC): 100 Glorious Years of Chemical Engineering and Technology, September 16–19, 2021
Języki publikacji
EN
Abstrakty
EN
With advancing technology, printed circuit board (PCB), one of the most important components of e-waste, has become a source of pollution due to an ineffective waste management system. This problem can be solved by converting PCB waste into a valuable product which will emerge to maximize the renewable energy supplies. In this aspect, co-pyrolysis is advantageous in both simple and successful in producing high-quality pyrolysis oil. In this paper, cotton stalk (CS) as biomass was used and pyrolysis of PCB, CS, and a mixture of both in 1:1 have been carried out. CS has a good combustibility at 500 C which was chosen for the pyrolysis reaction in a fixed bed reactor for slow pyrolysis. The pyrolytic oil was analysed by GC–MS and FTIR. The results indicate that there is an increase in oil yield from 19.6% to 27.5% by weight and phenol and phenolic compounds in oil of co-pyrolysis from 60.94% to 76.82% compared to literature available. There is an increase in bromine solidification in char by 25% with a mixture of CS and PCB compared to CS and PCB individually which is much higher than literature data. To the best of the authors’ knowledge, co-pyrolysis of PCB:CS has been attempted first time and debromination of oil was found excellent in the present work.
Słowa kluczowe
Rocznik
Strony
203–--216
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
  • Government Engineering College, Chemical Engineering Department, Bhuj- 370001, Gujarat, India
  • Gujarat Technological University, Chandkheda, Ahmedabad, 382424 Gujarat, India
autor
  • Shroff S. R. Rotary Institute of Chemical Technology, Chemical Engineering Department, Bharuch-393135, Gujarat, India
  • Gujarat Technological University, Chandkheda, Ahmedabad, 382424 Gujarat, India
autor
  • Shroff S. R. Rotary Institute of Chemical Technology, Chemical Engineering Department, Bharuch-393135, Gujarat, India
  • Gujarat Technological University, Chandkheda, Ahmedabad, 382424 Gujarat, India
Bibliografia
  • 1. Abnisa F., Mohd W., Wan A., 2014. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Convers. Manage., 87, 71–85. DOI: 10.1016/j.enconman.2014.07.007.
  • 2. Al Afif R., Anayah S.S., Pfeifer C., 2020. Batch pyrolysis of cotton stalks for evaluation of biochar energy potential. Renewable Energy, 147, 2250 2258. DOI: 10.1016/j.renene.2019.09.146.
  • 3. Bernardo M., Lapa N., Gonçalves M., Mendes B., Pinto F., Fonseca I., Lopes H., 2012. Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures. J. Hazard. Mater., 219–220, 196–202. DOI: 10.1016/j.jhazmat.2012.03.077.
  • 4. Brebu M., Spiridon I., 2012. Co-pyrolysis of LignoBoost®lignin with synthetic polymers. Polym. Degrad. Stab., 97, 2104–2109. DOI: 10.1016/j.polymdegradstab.2012.08.024.
  • 5. Chatterjee S.D., 2012. Electronic waste and India. Department of Information Technology, Electronics Niketan. Available at: http://meity.gov.in/writereaddata/files/EWaste_Sep11_892011.pdf.
  • 6. Chen D., Shuang E., Liu L., 2018. Analysis of pyrolysis characteristics and kinetics of sweet sorghum bagasse and cotton stalk. J. Therm. Anal. Calorim., 131, 1899–1909. DOI: 10.1007/s10973-017-6585-9.
  • 7. Das P., Gabriel J.C.P., Tay C.Y., Lee J.M., 2021. Value-added products from thermochemical treatments of contaminated e-waste plastics. Chemosphere, 269, 129409. DOI: 10.1016/j.chemosphere.2020.129409.
  • 8. Dhaundiyal A., Singh S.B., Hanon M.M., Rawat R., 2018. Determination of kinetic parameters for the thermal decomposition of parthenium hysterophorus. Environ. Clim. Technol., 22, 5–21. DOI: 10.1515/rtuect-2018-0001.
  • 9. Grause G., Furusawa M., Okuwaki A., Yoshioka T., 2008. Pyrolysis of tetrabromobisphenol-A containing paper laminated printed circuit boards. Chemosphere, 71, 872–878. DOI: 10.1016/j.chemosphere.2007.11.033.
  • 10. Hall W.J., Williams P.T., 2007. Processing waste printed circuit boards for material recovery. Circuit World, 33, 43–50. DOI: 10.1108/03056120710836936
  • 11. Hasan N.U., Rahman M.M., Rahat R.I., 2017. Characteristics comparison of pyrolysed oils obtained from waste of plastic, tyres and biomass solid. 4th International Conference on Advances in Electrical Engineering ICAEE 2017, 450–454. DOI: 10.1109/ICAEE.2017.8255398.
  • 12. Hense P., Reh K., Franke M., Aigner J., Hornung A., Contin A., 2015. Pyrolysis of waste electrical and electronic equipment (WEEE) for recovering metals and energy: Previous achievements and current approaches. Environ. Eng. Manage. J., 14, 1637–1647. DOI: 10.30638/eemj.2015.175.
  • 13. Islam M.N., Ali M.H., Haziq M., 2018. Fixed bed pyrolysis of biomass solid waste for bio-oil. AIP Conference Proceedings, 1875, 020015. DOI: 10.1063/1.4998369.
  • 14. Leroy V., Cancellieri D., Leoni E., Rossi J.L., 2010. Kinetic study of forest fuels by TGA: Model-free kinetic approach for the prediction of phenomena. Thermochim. Acta, 497, 1–6. DOI: 10.1016/j.tca.2009.08.001.
  • 15. Li X., Guo X., Wang S., Wang K., Luo Z., Wang Q., 2010. Characterization and analysis of char produced by biomass fast pyrolysis. 2010 Asia-Pacific Power and Energy Engineering Conference, APPEEC, 10–13. DOI: 10.1109/APPEEC.2010.5448524.
  • 16. Lin K.H., Chiang H.L., 2014. Liquid oil and residual characteristics of printed circuit board recycle by pyrolysis. J. Hazard. Mater., 271, 258–265. DOI: 10.1016/j.jhazmat.2014.02.031.
  • 17. Liu W.J., Tian K., Jiang H., Zhang X., Yang, G., 2013. Preparation of liquid chemical feedstocks by co-pyrolysis of electronic waste and biomass without formation of polybrominated dibenzo-p-dioxins. Bioresour. Technol., 128, 1–7. DOI: 10.1016/j.biortech.2012.10.160. Lu Q., Li W.Z., Zhu, X.F., 2009. Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers. Manage., 50, 1376–1383. DOI: 10.1016/j.enconman.2009.01.001.
  • 18. Ma C., Kamo T., 2019. Effect of steam-iron reaction on product characteristics and debromination during pyrolysis of epoxy-printed circuit boards. J. Hazard. Mater., 379, 120803. DOI: 10.1016/j.jhazmat.2019.120803.
  • 19. Madhu P., Kanagasabapathy H., Manickam I.N., 2018. Conversion of cotton residues to bio-oil and chemicals through flash pyrolysis in a fluidised bed reactor. Int. J. Energy Technol. Policy, 14, 20–33. DOI: 10.1504/IJETP.2018.088275.
  • 20. Mailto G., Mahar R.B., Unar I.N., Brohi K.M., 2018. Kinetic study of cotton stalk and rice husk samples under an inert and oxy combustion atmospheres. Mehran Univ. Res. J. Eng. Technol., 37, 327–336. DOI: 10.22581/muet1982.1802.09.
  • 21. Mankhand T.R., Singh K.K., Gupta S.K., Das S., 2012. Pyrolysis of printed circuit boards. Int. J. Metall. Eng., 1, 102–107. DOI: 10.5923/j.ijmee.20120106.01.
  • 22. Panchasara H., Ashwath N., 2021. Effects of pyrolysis bio-oils on fuel atomisation – A review. Energies, 14, 794. DOI: 10.3390/en14040794.
  • 23. Quan C., Li A., Gao N., 2010. Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil. J. Hazard. Mater., 179, 911–917. DOI: 10.1016/j.jhazmat.2010.03.092.
  • 24. Quan C., Li A., Gao N., 2012. Research on pyrolysis of PCB waste with TG-FTIR and Py-GC/MS. J. Therm. Anal. Calorim., 110, 1463–1470. DOI: 10.1007/s10973-011-2048-x.
  • 25. Raje N., Jain A., Kumar A., Pente A.S., Tiwari A.P., Badodkar D.N., 2020. E-Waste: Characterization and disposal through solid state route. Int. J. Environ. Sci. Nat. Res., 23, 556106. DOI: 10.19080/ijesnr.2020.23.556106.
  • 26. Rieger T., Oey J.C., Palchyk V., Hofmann A., Franke M., Hornung A., 2021. Chemical recycling of WEEE plastics – Production of high purity monocyclic aromatic chemicals. Processes, 9, 530. DOI: 10.3390/pr9030530.
  • 27. Sánchez-Borrego F.J., Álvarez-Mateos P., García-Martín J.F., 2021. Biodiesel and other value-added products from bio-oil obtained from agrifood waste. Processes, 9, 797. DOI: 10.3390/pr9050797.
  • 28. Shen Y., 2018. Effect of chemical pretreatment on pyrolysis of non-metallic fraction recycled from waste printed circuit boards. Waste Manage., 76, 537–543. DOI: 10.1016/j.wasman.2018.02.036.
  • 29. Uzoejinwa B.B., He X., Wang S., El-Fatah Abomohra A., Hu Y., Wang Q., 2018. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Energy Convers. Manage., 163, 468–492. DOI: 10.1016/j.enconman.2018.02.004.
  • 30. Xiao H., Zhou Z., Zhou H., Liu Q., Ren W., Lin H., Zhu H., He C., Tian K., 2017. Conversion of HBr to Br2 in the flue gas from the combustion of waste printed circuit boards in post-combustion area. J. Cleaner Prod., 161, 239–244. DOI: 10.1016/j.jclepro.2017.05.117.
  • 31. Xing M., Zhang F.S., 2013. Degradation of brominated epoxy resin and metal recovery from waste printed circuit boards through batch sub/supercritical water treatments. Chem. Eng. J., 219, 131–136. DOI: 10.1016/j.cej.2012.12.066.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3090772-c4ed-4b47-9da5-a391c36cba2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.