Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Intuitionistic fuzzy sets and rough sets are widely used for medical image segmentation, and recently combined together to deal with uncertainty and vagueness in medical images. In this paper, a rough set based intuitionistic fuzzy c-means (RIFCM) clustering algorithm is proposed for segmentation of the magnetic resonance (MR) brain images. Firstly, we proposed a new automated method to determine the initial values of cluster centroid using intuitionistic fuzzy roughness measure, obtained by considering intuitionistic fuzzy histon as upper approximation of rough set and fuzzy histogram as lower approximation of rough set. A new intuitionistic fuzzy complement function is proposed for intuitionistic fuzzy image representation to take into account intensity inhomogeneity and noise in brain MR images. The results of segmentation of proposed algorithm are compared with the existing rough set based fuzzy clustering algorithms, intuitionistic fuzzy clustering and bias corrected fuzzy clustering algorithm. Experimental results demonstrate the superiority of proposed algorithm.
Wydawca
Czasopismo
Rocznik
Tom
Strony
413--426
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electronics and Telecommunication, Yeshwantrao Chavan College of Engineering, Nagpur 441 110, Maharashtra, India
autor
- Department of Electronics & Telecommunication, Yeshwantrao Chavan College of Engineering, Nagpur, Maharashtra, India
autor
- Department of Radio-diagnosis and Imaging Center, NKP Salve Institute of Medical Sciences and Lata Mangeshkar Hospital, Nagpur, India
Bibliografia
- [1] Pham DL, Prince JL. An adaptive fuzzy c-means algorithm for image segmentation in presence of intensity in-homogeneity. Pattern Recognit Lett 1999;20(1):57–68.
- [2] Liew AWC, Leung S, Lau W. Fuzzy image clustering incorporating spatial continuity. Inst Elect Eng Vis Image Signal Process 2000;147:185–92.
- [3] Li L, Li X, Wei X, Liang Z. A unifying framework for inhomogeneity correction and partial volume segmentation of brain MR image. IEEE Nuclear Science Symposium Conference Record; 2004.
- [4] Ahmed MN, Yamany S, Mohamed N, Farag A, Moriarty T. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 2002;21(3):193–9.
- [5] Chen S, Zhang D. Robust image segmentation using FCM with spatial constraint based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern B 2004;34 (4):1907–16.
- [6] Shen S, Sandham WA, Granat MH, Sterr A. Mri fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans Inf Technol Biomed 2005;9(3).
- [7] Cai W, Chen S, Zhang D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit 2007;40:825–38.
- [8] Yang MS, Tsai HS. A gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recognit Lett 2008;29:1713–25.
- [9] Wang H, Fei B. A modified fuzzy c-means classification method using a multiscale diffusion filtering scheme. Med Image Anal 2009;13:193–202.
- [10] Zavaljevski A, Dhawan A, Gaskil M, Ball W, Johnson J. Multi-level adaptive segmentation of multi-parameter MR brain images. Comput Med Imaging Graph 2000;24 (2):87–98.
- [11] Corso JJ, Sharon E, Dube S, El-Saden S, Sinha U, Yuille A. Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans Med Imaging 2008;27:629–40.
- [12] Bricq S, Collet C, Armspach J. Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains. Med Image Anal 2008;12: 639–52.
- [13] Adelino R, da Silva F. Bayesian mixture models of variable dimension for image segmentation. Comput Methods Progr Biomed 2009;94:1–14.
- [14] Huang A, Abugharbieh R. A hybrid geometric statistical deformable model for automated 3-D segmentation in brain MRI. IEEE Trans Biomed Eng 2009;56(7).
- [15] Scherrer B, Forbes F, Garbay C, Dojat M. Distributed local MRF models for tissue and structure brain segmentation. IEEE Trans Med Imaging 2009;28:1278–95.
- [16] Nie J, Xue Z, Liu T, Young GS, Setayesh K, Wong LGSTC. Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov random field. Comput Med Imaging Graph 2009;33:431–41.
- [17] Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Med Imaging 2011;20(7):2007–16.
- [18] Thapaliyaa K, Pyuna JY, Parkb CS, Kwona GR. Level set method with automatic selective local statistics for brain tumor segmentation in MR images. Comput Med Imaging Graph 2013;37(7–8):522–37.
- [19] Mohabey A, Ray AK. Fusion of rough set theoretic approximations and FCM for color image segmentation.. In: IEEE Int. Conf. Systems, Man, and Cybernetics. 2000. pp. 1529–34.
- [20] Mushrif MM, Ray AK. Color image segmentation: rough-set theoretic approach. Pattern Recognit Lett 2008;29:483–93.
- [21] Yue XD, Miao DQ, Zhang N, Cao LB, Wu Q. Multiscale roughness measure for color image segmenttaion. Inf Sci 2012;216:93–112.
- [22] Mushrif MM, Ray AK. A-IFS histon based multithresholding algorithm for color image segmentation. IEEE Signal Process Lett 2009;16(3).
- [23] Chaira T, Anand S. A novel intuitionistic fuzzy approach for tumour/hemorrhage detection in medical images. J Sci Ind Res 2011;70:427–34.
- [24] Chaira T. A novel intuitionistic fuzzy c means clustering algorithm and its application to medical images. Appl Soft Comput 2011;11:1711–7.
- [25] Dubey YK, Mushrif MM. Segmentation of brain MR images using intuitionistic fuzzy clustering algorithm. ICVGIP. IIT Bombay, ACM; 2012978-1-4503-1660-6.
- [26] Sugeno S. Fuzzy measures and fuzzy integrals: a survey. In: Gupta M, Sardis GN, Gaines BR, editors. Automata and decision process. Amsterdam/New York: North Holland; 1977. p. 82–102.
- [27] Yager RR. On the measure of fuzziness and negation. Part II. Inf Control 1977;44:236–60.
- [28] Pawlak Z. Rough set theory and its applications. Int J Comput Inf Sci 1982;11:341–56.
- [29] Zadeh LA. Fuzzy sets. Inf Control 1965;8(3):338–53.
- [30] Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets Syst 1986;20(1):87–96.
- [31] Chaira T, Ray AK. A new measure using intuitionistic fuzzy set theory and its application to edge detection. Appl Soft Comput 2008;8(2):919–27.
- [32] Mookiah MR, Acharya UR, Chua CK, Min LC, Ng EY, Mushrif MM, et al. Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation. J Eng Med 2013;227(1):37–49.
- [33] Szmidt E, Kacprzyk J. Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst 2000;114(3):505–18.
- [34] Dunn J. A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters. J Cybern 1974;3(3):32–57.
- [35] Bezdek J. A convergence theorem for fuzzy ISODATA clustering algorithms. IEEE Trans Pattern Anal Mach Intell 1980;2:1–8.
- [36] http://www.bic.mni.mcgill.ca/brainweb/ [accessed January 2012].
- [37] Vovk U, Pernus F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 2007;26(3):405–15.
- [38] Ji ZX, Quan-SenSun, Xia DS. A framework with modified fast FCM for brain MR images segmentation. Pattern Recognit 2011;44:999–1013.
- [39] Caldairou B, Passat N, Habas PA, Studholme C, Rousseau F. A non-local fuzzy segmentation method: application to brain MRI. Pattern Recognit 2011;44:1916–27.
- [40] Lingras P, West C. Interval set clustering of web users with rough k-means. Tech. Rep.. Halifax, NS, Canada: St. Marys Univ; 2002.
- [41] Maji P, Pal S. Rfcm: a hybrid clustering algorithm using rough and fuzzy sets. Fundam Inform 2007;79:1–22.
- [42] Mitra S, Pedrycz W, Barman B. Shadowed c-means: integrating fuzzy and rough clustering. Pattern Recognit 2010;43:1282–91.
- [43] Maji P, Pal SK. Rough set based generalized fuzzy C-means algorithm and quantitative indices. IEEE Trans Syst Man Cybern B Cybern 2007;37(6):1529–40.
- [44] Ji ZX, Quan-SenSun, Xia DS. Generalized rough fuzzy c-means algorithm for brain MR image segmentation. Comput Methods Progr Biomed 2012;108:644–55.
- [45] Ji Z, Xia Y, Sun Q, Cao G. Interval-valued possibilistic fuzzy c-means clustering algorithm. Fuzzy Sets Syst 2014;253:138–56.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2fc9c70-72cf-4c70-b340-ee401c2a9001