Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the possibilities of analyzing the measurement system repeatability and reproducibility (GRR) analysis results in more detail and their visualization. Based on real data, the influence of appraisers’ behavior on GRR analysis results is evaluated. The measured data obtained in the GRR study by three operators are analyzed in more detail for cases involving only two operators. Comparison of the behavior of individual operators is performed using Gaussian curves, which allow to evaluate graphically the repeatability of individual operators and the reproducibility of measurement system. This approach makes possible to visualize the GRR analysis results with regard to behavior of individual operators. Obtained results make possible to improve the interpretation of GRR analysis results and are useful for measurement system improvement.
Wydawca
Czasopismo
Rocznik
Tom
Strony
479--486
Opis fizyczny
Bibliogr. 9 poz., rys., tab.
Twórcy
autor
- VSB - Technical University of Ostrava, Faculty of Materials Science and Technology, Department of Quality Management, Czech Republic
autor
- VSB - Technical University of Ostrava, Faculty of Materials Science and Technology, Department of Quality Management, Czech Republic
Bibliografia
- 1.Burdick, R.K., Borror, C.M., Montgomery, D.C., 2003. A review of methods for measurement systems capability analysis, Journal of Quality Technology, 35, 342– 354. DOI: 10.1080/00224065.2003.11980232
- 2.García, A.C., Río, A.G., 2013. Number of distinct data categories and gage repeatability and reproducibility, A double (but single) requirement. Measurement, 46 (8), 2514– 2518, DOI: 10.1016/j.measurement.2013.04.065
- 3.Klaput, P., Plura, J., 2011. The importance of graphical tools for measurement systems analysis, Proceedings of QMOD Conference on Quality and Service Sciences 2011, Pamplona: Universidad Navarra, 1010-1028.
- 4.Mikulová, P., Plura, J., 2018. Comparison of approaches to gauge repeatability and reproducibility analysis, 12th International Conference Quality Production Improvement QPI 2018, Zaborze, 183-189.
- 5.Montgomery, D.C., 2009. Introduction to statistical quality control. 6th ed. Hoboken, N. J.: Wiley, New Jersey.
- 6.MSA Work Group, 2010. Measurement System Analysis, Reference Manual, fourth ed. Chrysler Group LLC.
- 7.Plura, J., 2001. Quality Planning and Continuous Quality Improvement (In Czech), first ed. Computer Press, Prague, 244 pp., ISBN 80-7226-543-1.
- 8.Plura, J., Klaput P., 2011. The possibilities of confidence improvement of measurement systems analyses results, 21th International Conference on metallurgy and Materials - METAL, Brno, Czech republic.
- 9.Wheeler, D. J., 2006. EMP III: Evaluating the Measurement Process & Using Imperfect Data, Third ed. SPC Press, Knoxville, Tennessee.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2f4b575-558d-4cca-ac90-df63b816ae1e