PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Contribution of planetary electronic structure of atom to molecular interaction and properties of nanocomposites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper proposes a study of molecular interactions using the planetary model of the atomic structure. The description refers to transfer of the interactions by electrons bonded with an atom in a planetary system. In molecules we refer to analysis of electrons that remain unpaired during the formation of chemical compounds. The planetary electronic state of molecular interactions is defined by considering the action arm for interatomic forces. Then the interaction torque is defined. The problem is studied in a collection of atoms forming a nanoparticle and then analysis is carried on in the entire volume of the nanocomposite, which is defined as a set of the nanoparticles in a field of matrix-nanofiller interactions. As a result, new mechanical, magnetic, and optical properties of the nanocomposite arise and are described herein. The atomic-scale phenomena are described by both classical and quantum mechanics and are then transferred to the nanoparticle scale by applying statistical mechanics. The quantum solutions for the optically active electrons form the basis for the optical properties of the nanocomposite using forced gyrobirefringence and Maxwell equations. The results of the theoretical analysis are confirmed by experiment using an electron paramagnetic resonance spectrometer.
Rocznik
Strony
77--89
Opis fizyczny
Bibliogr. 26 poz., wykr., tab., rys.
Twórcy
autor
  • Cracow University of Technology
autor
  • Jagiellonian University
  • Newag IP Management
Bibliografia
  • [1] R.P. Feynman, R.B. Leighton, and M. Sands, Feynman Lecture on Physics, Volume III, Reading, MA: Addison-Wesley, 1963.
  • [2] W. Kołos and J. Sadlej, Atom and molecule, WNT, Warsaw 2007.
  • [3] A.R. Leach, Molecular modelling: Principle and Application, Longmann 1996.
  • [4] J. Marx and J. Hutter, Ab initio Molecular Dynamics, D. Marx, Cambridge University Press, Cambridge, New York, 2009.
  • [5] W.A. Harrison, Electronic structure and the properties of Solids. New York: Dover Publications, 1989.
  • [6] J.J. Gilman, Electronic Basis of the Strength of Materials, Cambridge University Press, 2003.
  • [7] V.L. Moruzzi and J.F. Janak, A. R. Williams, Calculated electronic properties of metal, IBM Thomas J. Watson Research Center Yorktown Heights, New York, 1976.
  • [8] M. Born and E. Wolf, Principles of Optics, Elsevier, 2013.
  • [9] F. Ratajczyk, Optics of anisotropic mediums, Warsaw 1994, PWN.
  • [10] M. Finnis, Interatomic Forces in Condensed Matter, Oxford University Press, Oxford 2003.
  • [11] J.C. Słonczewski, Current-driver excitation of magnetic multilayers, Journal of Magnetism and Magnetic Materials, 159, 1996, L1-L7.
  • [12] W. Nowacki, Some problems of micropolar magnetoelasticity, Proc. Vibr. 12, 2, 105, 1971, 161.
  • [13] S. Kaliski, Thermo-magneto-microelasticity, Bull. Acad. Polon. Sci., Sér. Sci. tech. 16, 1, 7, 1968.
  • [14] M.R. Dudek, N. Guskos, B. Grabiec, and M. Maryniak, Magnetization Dynamics in Landau-Lifshitz-Gilbert formulation. Modeling the FMR experiment, Jon. Non-Cryst. Solids, 2008.
  • [15] M. Sikoń, Physical interpretation of the Cosserat mechanics for a collection of atoms, Bull. Pol. Ac.: Tech., 64 (2), 2016, 333‒338.
  • [16] M. Sikoń, Cosserat birefringence. An introduction to nonsymmetrical photoelasticity, Bull. Pol. Ac.: Tech., 60 (1), 2012, 89‒94.
  • [17] J. Schlappa, et al. Nature advance online publication, http://dx.doi.org/10.1038/nature10974 (2012).
  • [18] A. Oleś, Experimental Methods of Solid State Physics, WNT, Warsaw 1998.
  • [19] Z. Kęcki, Basics of molecular spectroscopy, Warsaw 1992.
  • [20] Yu.A. Koksharov, D.A. Pankratov, S.P. Gubin, I.D. Kosobudsky, M. Beltran, Y. Khodorkovsky, and A.M. Tishin, „Electron paramagnetic resonance of ferrite nanoparticles”, J. Appl. Phys. 89, 2293 (2001).
  • [21] www2.chemia.uj.edu.pl/~makowski.
  • [22] J.J. Gilman, Mechanochemistry, Science, 274, 65.
  • [23] B. Barrett, R. Geiger, M. Meunier, B. Canuel, A. Gauguet, P. Bouyer, and A. Landragin, The Sagnac effect: 20 years of development in matter-wave interferometry, C. R. Physique 15 (2014) 875–883.
  • [24] R.D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides.” a Crystallographica Section A, vol. 32, no 5, 1976, pp. 751–767.
  • [25] H. Haken and H.Ch. Wolf, The Physics of Atoms and Quanta, Springer-Verlag, 2000.
  • [26] M. Sikoń, Analysis of Cosserat medium on the basis of the atomic structure of matter, Monograph, Cracow University of Technology Publisher House, Cracow 2012.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2f02960-ef7b-4715-a1a0-ce41e7179a56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.