PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photon attenuation properties of concretes containing magnetite and limonite ores

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, gamma shielding properties of concretes containing magnetite and limonite ores at different ratios (5%, 10%, 15%, 20%, and 30%) were investigated by using a 60Co (1.25 MeV) radioactive source which was built in Thratron 1000E™ device used for radiotherapy purposes. Then, the photon transmission values (I/I0) were measured by 0.6 cm3, farmer type, PTW™ ion chamber. The dose readings (I0 and I), made by PTW™ Unidose Electrometer, were used to calculate the linear attenuation coefficient (, cm-1), the mean free path (, cm), and the mass attenuation coefficient (, cm2/g) by the Lambert equations, and the results were compared with the calculations obtained using the WinXCom computer program. The findings from this study revealed that the concretes containing magnetite and limonite ores were more effective than the ordinary concrete in the attenuation of gamma rays. It was determined that the values of the mean free path decreased with the increasing concentrations of magnetite and limonite ores while the linear attenuation coefficients for 10 concrete blocks increased with the increasing magnetite and limonite ore concentrations. A comparison of the theoretical values obtained from the WinXCom computer program and the experimental results revealed a good level of conformity.
Słowa kluczowe
Rocznik
Strony
184--191
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Department of Physical Chemistry, Faculty of Science, Yuzuncu Yil University, 65080 Van, Turkey
autor
  • Department of Physics Faculty of Science, Yuzuncu Yil University, 65080 Van, Turkey
autor
  • Department of Radiation Oncology, Faculty of Medical, Yuzuncu Yil University, 65080 Van, Turkey
Bibliografia
  • AKKURT I., BASYIGIT C., KILINCARSLAN S., MAVI B., 2005, The shielding of -rays by concretes produced with barite, Prog. Nucl. Energy, 46 (I), 1−11.
  • AKKURT I., AKYILDIRIM H., MAVI B., KILINCARSLAN S., BASYIGIT C., 2010, Photon attenuation coefficients of concrete includes barite in different rate, Ann. Nucl. Energy, 37, 910−914.
  • AKKURT I., AKYILDIRIM H., MAVI B., KILINCARSLAN S., BASYIGIT C., 2010, Radiation shielding of concrete contaning zeolite, Radiat. Measur., 45, 827−830.
  • ANGELONA M., ESPOSTITO A., CHITI M., GENTILE A., 2001, Measurements of mass attenuation coefficients for four mixtures using X _ rays from 13 keV up to 40 keV, Radiat. Phys. Chem., 61, 547−548.
  • BALTAS H., CELIK S., CEVIK U., YANMAZ E., 2007, Measurement of mass attenuation coefficients and effective atomic numbers for MgB2 superconductor using X – ray energies, Radiat. Meas., 42, 55−60.
  • BASHTER I.I., 1997, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy, 24(17), 1389−1401.
  • BHANDAL G.S., SINGH K., 1995, Total and partial mass attenuation coefficients and effective atomic number studies in different solid state nuclear track detectors, Radiat. Phys. Chem., 47, 109−116.
  • CAKIR T., GUR A., ARASOGLU A., 2012, The comparison of absorbed dose measurements for water and artificial body fluid, Int. J. Radiat. Res., 10(3-4), 157−164.
  • DEMIR F., BUDAK G., SAHIN R., KARABULUT A., OLTULU M., SERIFOĞLU K., UN A., 2010, Radiation transmission of heavyweight and normal-weight concretes containing colemanite for 6 MV and 18 MV X-rays using linear accelerator, Ann. Nucl. Energy, 37, 339−344.
  • EL–KATEB A.H., RIZK R.A.M., ABDUL–KADER A.M., 2000, Determination of atomic cross-sections and effective atomic numbers for some alloys, Ann. Nucl. Energy, 27, 1333 −1343.
  • GERWARD L., GUILBERT N., BJORN JENSEN K., LEVRING H., 2001, X- ray absorption in matter. Reeng. XCOM, Radiat. Phys. Chem., 60, 23 − 24.
  • GERWARD L., GUILBERT N., BJORN JENSEN K., LEVRING H., 2004, WinXCom – a program for calculating X- ray attenuation coefficients, Radiat. Phys. Chem., 71, 653−654.
  • ICELLI O., ERZENOGLU S., GURBULAK B., 2005a, Mass attenuation coefficients for ntype InSe InSe InSe:Gd InSe:Ho and InSe:Er single crystal, J. Quant, Spectrosc. Radiat. Transf., 90, 399−407.
  • ICELLI O., ERZENOGLU S., KARAHAN I.H., CANKAYA G., 2005b, Effective atomic numbers for CoCuNi alloys using transmission experiments, J. Quant. Spectrosc. Radiat. Transf., 91, 485−491.
  • KHANNA A., BHATTI S.S., SINGH K.J., THIND K.S., 1996, Gamma – ray attenuation coefficients in some heavy metal oxide borate glasses at 662 keV, Nucl. Instrum. Methods Phys. Res. B, 114, 217−220.
  • KHARITA M.H., YOUSEF S., AINASSAR M., 2009, The effect of carbon powder addition on the properties of hematite radiation shielding concrete, Progr. Nucl. Energy, 51, 388−392.
  • MAKARIOUS A.S., BASHTER I.L., EL-SAYEDABDO A., SAMIR ABDEL AZIM M., KANSOUH W.A., 1996, On the utilization of heavy concrete for radiation shielding, Ann. Nucl. Energy, 23, 195−206.
  • MURTY V.R.K., DEVAN K.R.S., 2004, Photon interaction cross section in the low energy region in Mg and V, Radiat. Phys. Chem., 71, 671−672.
  • MURTY V.R.K., WINKOUN D.P., DEVAN K.R.S., 2000, Effective atomic numbers for W/Cu alloy using transmission experiments, Appl. Radiat. Isot., 53, 945−948.
  • MURTY V.R.K., WINKOUN D.P., DEVAN K.R.S., 2001, Total photoelectric cross sections close to absorption edges, Radiat. Phys. Chem., 51, 361−362.
  • OSMANLIOGLU A.E., 2006, Management of spent sealed radioactive sources in Turkey, Health Physics Society, 91, 258−262 .
  • OTO B., GUR A., 2013, Determination of mass attenuation coefficients of concretes contaning ulexite and ulexite concentrator waste, Ann. Nucl. Energ, 59, 72−74.
  • OTO B., GUR A., KACAL M.R., DOGAN B., ARASOGLU A., 2013, Photon attenuation properties of some concretes contaning barite and colemanite in different rates, Ann. Nucl. Energy, 51, 120−124.
  • OTO B., GUR A., 2012, Determination of mass attenuation coefficients for concretes contaning tincal concentrator waste, International Journal of Physical Sciences, 7(44), 5861−5864.
  • SINGH H., SINGH K., G., GERWARD L., NATHURAM R., LARK B.S., SAHOTA H.S., KHANNA A., 2003, Barium and calcium borate glasses as shielding materials for x-rays and gamma-rays, Phys. Chem. Glass, 44, 5−8.
  • SINGH S., GHUMMAN S.S., SINGH C., THIND K.S., MUDAHAR G.S., 2010, Buildup of gamma ray photons in flyash concretes: a study, Ann. Nucl. Energy, 37, 681−684.
  • TURGUT U., BUYUKKASAP E., SIMSEK O., ERTUGRUL M., 2005, X–ray attenuation coefficients of Fe compounds in the K – edge region at different energies and the validity of the mixture rule, J. Quant. Spectrosc. Radiat. Transf., 92, 143−151.
  • YALTAY N., EKINCI C.E., CAKIR T., OTO B., 2015, Photon attenuation properties of concrete produced with pumice aggregate and colemanite addition in different rates and the effect of curing age to these properties, Progress in Nuclear Energy, 78, 25−35.
  • YILMAZ E., BALTAS H., KIRIS E., USTABAS I., CEVIK U., EL-KHAYATT A.M., 2011, Gamma ray and neutron shielding properties of some concrete materials, Ann. Nucl. Energy, 38, 2204−2212.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2ecf36b-93cf-477b-a2d8-f96a5268c0e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.