PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Abnormal Breast Detection in Mammogram Images by Feed-forward Neural Network Trained by Jaya Algorithm

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
(Aim) Abnormal breast can be diagnosed using the digital mammography. Traditional manual interpretation method cannot yield high accuracy. (Method) In this study, we proposed a novel computer-aided diagnosis system for detecting abnormal breasts in mammogram images. First, we segmented the region-of-interest. Next, the weighted-type fractional Fourier transform (WFRFT) was employed to obtain the unified time-frequency spectrum. Third, principal component analysis (PCA) was introduced and used to reduce the spectrum to only 18 principal components. Fourth, feed-forward neural network (FNN) was utilized to generate the classifier. Finally, a novel algorithm-specific parameter free approach, Jaya, was employed to train the classifier. (Results) Our proposed WFRFT + PCA + Jaya-FNN achieved sensitivity of 92.26% ± 3.44%, specificity of 92.28% ± 3.58%, and accuracy of 92.27% ± 3.49%. (Conclusions) The proposed CAD system is effective in detecting abnormal breasts and performs better than 5 state-of-the-art systems. Besides, Jaya is more effective in training FNN than BP, MBP, GA, SA, and PSO.
Wydawca
Rocznik
Strony
191--211
Opis fizyczny
Bibliogr. 57 poz., fot., rys., tab., wykr.
Twórcy
autor
  • School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China
autor
  • Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat State, India
autor
  • Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
autor
  • Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing, Jiangsu 210042, China
autor
  • W.P. Carey School of Business, Arizona State University, Tempe, AZ 85287, USA
autor
  • School of Electronic Information & Electrical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
Bibliografia
  • [1] Ajmera P, Holambe R. Fractional Fourier transform based features for speaker recognition using support vector machine. Computers & Electrical Engineering. 2013; 39 (2): 550-557. doi: 10.1016/j.compeleceng.2012.05.011.
  • [2] Almuntashri A, Agaian S. Human Visual System-Based Edge Detection Using Image Contrast Enhancement and Logarithmic Ratio. In: Multimedia/Image Processing, Security, and Applications. Mobile. vol. 7708; 2010. p. 11. doi: 10.1117/12.849609.
  • [3] Anitha J, Peter J. Mammogram segmentation using maximal cell strength updation in cellular automata. Med Biol Eng Comput. 2015; 53 (8): 737-749. doi: 10.1007/s11517-015-1280-0.
  • [4] Awan S, Aslam M, Khan Z, Saeed H. An efficient model based on artificial bee colony optimization algorithm with Neural Networks for electric load forecasting. Neural Computing & Applications. 2014; 25 (7-8): 1967-1978. doi: 10.1007/s00521-014-1685-y.
  • [5] Azar A, El-Said S. Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Computing & Applications. 2014; 24 (5): 1163-1177. doi: 10.1007/s00521-012-1324-4.
  • [6] Bhaduri B, Tay C, Quan C, Sheppard C. Motion detection using extended fractional Fourier transform and digital speckle photography Opt Express. 2010; 18 (11): 11396-11405. doi: 10.1364/OE.18.011396.
  • [7] Cadenas J, Megson G, Sherratt R. Median Filter Architecture by Accumulative Parallel Counters. 2015; 62 (7): 661-665. doi: 10.1109/TCSII.2015.2415655.
  • [8] Cagatay N, Datcu M. FrFT-Based Scene Classification of Phase-Gradient InSAR Images and Effective Baseline Dependence. 2015; 12 (5): 1131-1135. doi: 10.1109/LGRS.2014.2385771.
  • [9] Chandwani V, Agrawal V, Nagar R. Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks. Expert Systems with Applications. 2015; 42 (2): 885-893. doi: 10.1016/j.eswa.2014.08.048.
  • [10] Chen Y, Gao D, Nie C, Luo L, Chen W, (et al) XY. Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior. Computerized Medical Imaging and Graphics. 2009; 33 (7): 495-500. doi: 10.1016/j.compmedimag.2008.12.007.
  • [11] Chen Y, Shi L, Yang J, Hu Y, Luo L, (et al) XY. Radiation dose reduction with dictionary learning based processing for head CT. Australas Phys Eng Sci Med. 2014; 37 (3): 483-493. doi: 10.1007/s13246-014-0276-7.
  • [12] Dede T, Togan V. A teaching learning based optimization for truss structures with frequency constraints. Struct Eng Mech. 2015; 53 (4): 833-845. doi: 10.12989/sem.2015.53.4.833.
  • [13] Dokeroglu T. Hybrid teaching-learning-based optimization algorithms for the Quadratic Assignment Problem. Computers & Industrial Engineering. 2015; 85: 86-101. doi: 10.1016/j.cie.2015.03.001.
  • [14] Fuangkhon P. An incremental learning preprocessor for feed-forward neural network. Artificial Intelligence Review. 2014; 41 (2): 183-201. doi: 10.1007/s10462-011-9304-0.
  • [15] Gonzalez-Alvarez D, Vega-Rodriguez M, Rubio-Largo A. Finding Patterns in Protein Sequences by Using a Hybrid Multiobjective Teaching Learning Based Optimization Algorithm. 2015;12 (3): 656-666. doi: 10.1109/TCBB.2014.2369043.
  • [16] Gorgel P, Sertbas A, Ucan O. Computer-aided classification of breast masses in mammogram images based on spherical wavelet transform and support vector machines. Expert Systems. 2015; 32 (1): 155-164. doi: 10.1111/exsy.12073.
  • [17] Guo D, Zhang Y, Xiang Q, Li Z. Improved Radio Frequency Identification Indoor Localization Method via Radial Basis Function Neural Network. Mathematical Problems in Engineering. 2014; 2014: 9. Article ID 420482. URL http://dx.doi.org/10.1155/2014/420482.
  • [18] Han Z, Chen H, Li Y, Li J, Yao C, Cheng L. Mass segmentation in mammogram based on SPCNN and improved vector-CV. Acta Physica Sinica. 2014; 63 (7): 11. Available from: http://wulixb.iphy.ac.cn/CN/Y2014/V63/I7/078703. doi: 10.7498/aps.63.078703.
  • [19] Hartman M, Drotman M, Arleo E. Annual Screening Mammography for Breast Cancer in Women 75 Years Old or Older: To Screen or Not to Screen. American Journal of Roentgenology. 2015; 204 (5): 1132-1136. doi: 10.2214/AJR.14.13394.
  • [20] Henderson L, O’Meara E, Braithwaite D, Onega T, Surveillance CBC. Performance of Digital Screening Mammography Among Older Women in the United States. Cancer. 2015; 121 (9): 1379-1386. doi: 10.1002/cncr.29214.
  • [21] Iseri I, Oz C. Computer aided detection of microcalcification clusters in mammogram images with machine learning approach. Optoelectron Adv Mater-Rapid Commun. 2014; 8 (7-8): 689-95.
  • [22] Karmakar S, Shrivastava G, Kowar M. Impact of learning rate and momentum factor in the performance of back-propagation neural network to identify internal dynamics of chaotic motion. Kuwait Journal of Science. 2014; 41 (2): 151-174.
  • [23] Kuroda M, Mori Y, Iizuka M, Sakakihara M. Acceleration of the alternating least squares algorithm for principal components analysis. Computational Statistics & Data Analysis. 2011; 55 (1): 143-153. doi: 10.1016/j.csda.2010.06.001.
  • [24] Llave Y, Hagiwara T, Sakiyama T. Artificial neural network model for prediction of cold spot temperature in retort sterilization of starch-based foods. Journal of Food Engineering. 2012; 109 (3): 553-560. doi: 10.1016/j.jfoodeng.2011.10.024.
  • [25] Mallikarjunaswamy M, Holi M, Raman R. Knee Joint Menisci Segmentation, Visualization and Quantification Using Seeded Region Growing Algorithm. Journal of Medical Imaging and Health Informatics. 2015; 5 (3): 552-560. doi: 10.1166/jmihi.2015.1435.
  • [26] Manoochehri M, Kolahan F. Integration of artificial neural network and simulated annealing algorithm to optimize deep drawing process. International Journal of Advanced Manufacturing Technology. 2014; 73 (1-4): 241-249. doi: 10.1007/s00170-014-5788-5.
  • [27] Milosevic M, Jankovic D, Peulic A. Comparative analysis of breast cancer detection in mammograms and thermograms. Biomed Eng-Biomed Tech. 2015; 60 (l): 49-56.
  • [28] Molloi S, Ding H, Feig S. Breast Density Evaluation Using Spectral Mammography, Radiologist Reader Assessment, and Segmentation Techniques: A Retrospective Study Based on Left and Right Breast Comparison. Academic Radiology. 2015; 22 (8): 1052-1059. doi: 10.1016/j.acra.2015.03.017.
  • [29] Momeni E, Armaghani D, Hajihassani M, Amin M. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement. 2015; 60: 50-63. doi: 10.1016/j.measurement.2014.09.075.
  • [30] Nithya R, Santhi B. Computer Aided Diagnosis System for Mammogram Analysis: A Survey. Journal of Medical Imaging and Health Informatics. 2015; 5 (4): 653-674. doi: http://dx.doi.org/10.1166/jmihi.2015.1441.
  • [31] Pajares G. Sensors and Technologies in Spain: State-of-the-Art. Sensors. 2014; 14 (8): 15282-15303. doi: 10.3390/s140815282.
  • [32] Peng N. Chou C, Pan H, Chang T, Hu C, (et al) YC. FDG-PET/CT detection of very early breast cancer in women with breast microcalcification in mammography screening lesions found. Journal of Medical Imaging and Radiation Oncology. 2015; 59 (4): 445-452. doi: 10.1111/1754-9485.12309.
  • [33] Perez N, Lopez M, Silva A, Ramos I. Improving the Mann-Whitney statistical test for feature selection: An approach in breast cancer diagnosis on mammography. Artificial Intelligence in Medicine. 2015; 63 (1): 19-31.
  • [34] Rao R, Savsani V, Vakharia D. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design. 2011; 43 (3): 303-315. doi: 10.1016/j.cad.2010.12.015.
  • [35] Rao RV BJ Savsani VJ. Teaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems. Engineering Optimization. 2012; 44 (12): 1447-1462. doi: 10.1080/0305215X.2011.652103.
  • [36] Rao R, Patel V. An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica. 2013; 20 (3): 710-720. doi: 10.1016/j.scient.2012.12.005.
  • [37] Rao R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int Journal of Industrial Engineering Computations. 2016; 7: 19-34. URL http://www.growingscience.com/ijiec/Vol7/IJIEC\_2015\_32.pdf.
  • [38] Seok J, Bae K. Target Classification Using Features Based on Fractional Fourier Transform. IEICE Trans Inf Syst. 2014; E97D (9): 2518-2521.
  • [39] Shahamat H, Pouyan A. Face recognition under large illumination variations using homomorphic filtering in spatial domain. Journal of Visual Communication and Image Representation. 2014; 25 (5): 970-977. doi: 10.1016/j.jvcir.2014.02.007.
  • [40] Sharma H, Sharma K, Bhagat O. Respiratory rate extraction from single-lead ECG using homomorphic filtering. Computers in Biology and Medicine. 2015; 59: 80-86. doi: 10.1016/j.compbiomed.2015.01.024.
  • [41] Shojaee S, Hezave A, Lashkarbolooki M, Shafipour Z. Prediction of the Binary Density of the Ionic Liquids Plus Water using Back-Propagated Feed Forward Artificial Neural Network. Chemical Industry & Chemical Engineering Quarterly. 2014; 20 (3): 325-338. doi: 10.2298/CICEQ121128014S.
  • [42] Singh B, Jain V, Singh S. Mammogram Mass Classification Using Support Vector Machine with Texture, Shape Features and Hierarchical Centroid Method. Journal of Medical Imaging and Health Informatics. 2014; 4 (5): 687-696. doi: http://dx.doi.org/10.1166/jmihi.2014.1312.
  • [43] Vo A, Linh T, Laefer D, Bertolotto M. Octree-based region growing for point cloud segmentation. ISPRS Journal of Photogrammetry and Remote Sensing. 2015; 104: 88-100. doi: 10.1016/j.isprsjprs.2015.01.011.
  • [44] Wang S, Wu L. A Novel Method for Magnetic Resonance Brain Image Classification based on Adaptive Chaotic PSO. Progress in Electromagnetics Research. 2010; 109: 325-343. Available from: http://www.jpier.org/pier/pier.php?paper=10090105. doi: doi: 10.2528/PIER10090105.
  • [45] Wang S, Pan H, Zhang C, Tian Y. RGB-D image-based detection of stairs, pedestrian crosswalks and traffic signs. Journal of Visual Communication and Image Representation. 2014; 25 (2): 263-272. doi: l0.1016/j.jvcir.2013.11.005.
  • [46] Wang S, Yang X, Zhang Y, Phillips P, Yang J, Yuan TF. Identification of Green, Oolong and Black Teas in China via Wavelet Packet Entropy and Fuzzy Support Vector Machine. Entropy. 2015; 17 (10): 6663-6682. doi: 10.3390/e17106663.
  • [47] Wang S, Zhang Y, Dong Z, Du S, Ji G, (et al) JY. Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. International Journal of Imaging Systems and Technology. 2015; 25 (2): 153-164. doi: 10.1002/ima.22132.
  • [48] L, Zhang Y. Classification of Fruits Using Computer Vision and a Multiclass Support Vector Machine. Sensors. 2012; 12 (9): 12489-12505. doi: 10.3390/s120912489.
  • [49] Yikcumakis E, Tzamicha E, Dimitriadis A, Georgiou E, Tsapaki V, Chalazonitis A. Dual-energy contrast-enhanced digital mammography: patient radiation dose estimation using a Monte Carlo code. Radiat Prot Dosimetry. 2015; 165 (l-4): 369-372. doi: 10.1093/rpd/ncv098.
  • [50] SN SY, Li F, Liao Y, Chen Y, Shen W, Huang T. Identification of Breast Cancer Using Integrated Information from MRI and Mammography. Plos One. 2015; 10 (6): 11. doi: 10.1371/journal.pone.0128404.
  • [51] Zhang Y, Wang S, Ji G, Phillips P. Fruit classification using computer vision and feedforward neural network. Journal of Food Engineering. 2014; 143 (0): 167-177. doi: 10.1016/j.jfoodeng.2014.07.001.
  • [52] Zhang Y, Wang S, Phillips P, Ji G. Binary PSO with mutation operator for feature selection using decision tree applied to spam detection. Knowledge-Based Systems. 2014; 64 (0): 22-31. doi: 10.1016/j.knosys.2014.03.015.
  • [53] Zhang Y, Dong Z, Liu A, Wang S, Ji G, (et al) ZZ. Magnetic Resonance Brain Image Classification via Stationary Wavelet Transform and Generalized Eigenvalue Proximal Support Vector Machine. Journal of Medical Imaging and Health Informatics. 2015; 5 (7): 1395-1403. doi: 10.1166/jmihi.2015.1542.
  • [54] Zhang Y, Wang S. Detection of Alzheimer’s disease by displacement field and machine learning. PeerJ. 2015; 3 (e1251). Available from: https://doi.org/10.7717/peerj.1251.
  • [55] Zolbanin H, Delen D, Zadeh A. Predicting overall survivability in comorbidity of cancers: A data mining approach. Decision Support Systems. 2015; 74: 150-161. doi: 10.1016/j.dss.2015.04.003.
  • [56] Zolfaghari Z, Mosaddeghi M, Ayoubi S. ANN-based pedotransfer and soil spatial prediction functions for predicting Atterberg consistency limits and indices from easily available properties at the watershed scale in western Iran. Soil Use Manage. 2015; 31 (1): 142-154. doi: 10.1111/sum.12167.
  • [57] Zozulya O, Pletneva V. Influence of thermobaric conditions on size distribution of colloidal gas aphrons. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015; 483: 232-238. doi: 10.016/j.colsurfa.2015.05.039.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2e6f19b-d800-4916-9b88-db7f10b8e491
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.