PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frame structure optimization with complex constraints

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern building industry puts large demands on designers. Generally, both the freedom in design as well as the constant pressure on cost reduction exert a strong influence on the design process. For decades many near optimal solutions have been developed for a wide spectrum of engineering problems. However, these standard solutions are based on a standard building architecture that in many cases prevents implementation of these solutions. Today, a structure with complex geometry, load and boundary conditions can be analyzed using widely available software solutions. Despite the ease of designing structures that fulfill requirements for both ultimate limit state (ULS) and serviceability limit state (SLS), the question of an optimal solution is still open. In this paper two optimization approaches, the genetic algorithm and the Hooke-Jeeves method with their hybrid form, are applied for optimization of steel structures with complex constraints (based on PN-90/B-03200 standard): an example of I - beam section shape forming and designing of three-bay frame profiles. The entire analysis together with the optimization process has been developed in the SOLDIS [10] environment.
Rocznik
Tom
Strony
91--115
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Institute of Structural Engineering Piotrowo 5, 60-965 Poznan, Poland
  • Institute of Structural Engineering Piotrowo 5, 60-965 Poznan, Poland
Bibliografia
  • 1. Burczyński T, Długosz A, Kuś W.: Parallel evolutionary algorithms in shape optimization of heat radiators. Journal of Theoretical and Applied Mechanics, 44, 2 (2006) 351-366.
  • 2. Camp C., Pezashk S., Cao G.: Optimized design of two-dimensional structures using a genetic algorithm, Journal of Structural Engineering, 124, 5 (1998)551-559.
  • 3. Camp C., Bichon B.J., Stovall S.P.: Design of Steel Frames Using Ant Colony Optimization, Journal of Structural Engineering, 131, 3 (2005) 369-379.
  • 4. Chao HK, Rowlands RE.: Reducing tensile stress concentration in performed hybrid laminate by genetic algorithm. Composites Science and Technology, 67, 13 (2007) 2877-2883.
  • 5. Degertekin S.O.: Optimum design of steel frames using harmony search algorithm, Structural and Multidisciplinary Optimization, 36 (2008) 393-401.
  • 6. Croce E.S., Ferreira E.G, Lemonge A.C., Fonseca L.G. Barbosa H.J.C.: A genetic algorithm for structural optimization of steel truss: Proc. of the 25th Iberian Latin-American Congress on Computational Methods in Engineering, Recife, Brazil, 2004.
  • 7. Giunta A. A.: Aircraft multidisciplinary design optimization using design of experiment theory and response surface modeling methods. PhD dissertation, Viginia Polytechnic 1997.
  • 8. Goldberg D.E..: Genetic Algorithm in Search, Optimization and Machine Learning, 1st Edition, Addison-Wesley Professional 1989.
  • 9. Guerlement G., Targowski R., Gutkowski W., Zawidzka J., Zawidzki J.: Discrete minimum weight design of steel structures using EC3 code, Structural and Multidisciplinary Optimization, 22 (2001) 322-327.
  • 10. Hooke R., Jeeves T.A.: Direct search solution of numerical and statistical problems. Journal of Association for Computing Machinery, 8 (1961), 212-229.
  • 11. Hayalioglu M.S.: Optimum design of geometrically non-linear elastic-plastic steel frames via genetic algorithm, Computers and Structures, 77 (1998) 527-538.
  • 12. Hayalioglu M.S.: Optimum load and resistance factor design of steel space frames using genetic algorithm, Structural and Multidisciplinary Optimization, 21 (2001) 292-299.
  • 13. Kaveh A., Kalatjari V.: Genetic algorithm for discrete-sizing optimal design of russes using the force method, International Journal for Numerical Methods in Engineering, 55 (2002) 55-72.
  • 14. Kaveh A., Rahami H.: Nonlinear analysis and optimal design of structures via force method and genetic algorithm, Computers and Structures, 84 (2006) 770-778.
  • 15. Łodygowski T, Szajek K., Wierszycki M.: Optimization of dental implant using genetic algorithm. Journal of Theoretical and Applied Mechanics, 47, 3 (2009) 573-598.
  • 16. Missoum S., Gurdal S., Watson L.T.: A displacement based optimization method for geometrically nonlinear frame structures, Structural and Multidisciplinary Optimization, 24 (2002) 195-204.
  • 17. Myers, R. H., Montgomery, D. C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, New York, John Wiley & Sons 1995.
  • 18. Michalewicz Z, Schoenauer M.: Evolutionary Algorithms for Constrained Parameter Optimization Problem. Evolutionary Computation, 4, 1 (1996) 1-32.
  • 19. PN-90/B-03200 – “Steel structures. Design rules” (in Polish).
  • 20. PN-82/B-02000 – “Actions on building structures. Principal of the establishment of values” (in Polish).
  • 21. PN-82/B-02001 - “Actions on building structures. Permanent actions” (in Polish).
  • 22. PN-80/B-02010 - “Loads in static calculations. Snow loads.” (in Polish).
  • 23. PN-77/B-02011 - “Loads in static calculations. Wind loads.” (in Polish).
  • 24. Shrestha S.M., Ghaboussi J.: Evolution of Optimum Structural Shapes Using Genetic Algorithm, Journal of Structural Engineering, 124, 11 (1998): 1331-1338.
  • 25. SOLDIS, application for static and dynamic analysis with optimization procedures for plane beam structures, http://www.soldis.com.pl, author: Krzysztof Szajek.
  • 26. Takezewa A., Nishivaki S., Izui K., Yoshimura M.: Structural optimization based on topology optimization techniques using frame elements considering cross-sectional properties, Structural and Multidisciplinary Optimization, 34 (2007) 41-60.
  • 27. Toropov V.V., Mahfouz S.Y.: Design optimization of structural steelwork using a genetic algorithm, FEM and a system of design rules, Engineering Computations, 18, 3/4 (2001) 437-459.
  • 28. Voss M.S., Foley M.C.: Evolutionary Algorithm for Structural Optimization. A Joint Meeting of the Eighth International Conference on Genetic Algorithm (ICGA-99) and the Fourth Annual Genetic Programming Conference (GP-99), Orlando, Florida, 1999.
  • 29. Żmuda J.: Podstawy projektowania konstrukcji metalowych, Opole, TiT 1992 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2e6e2ab-09e1-4fa3-996d-612cb2796c59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.