PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Location Estimation of Nodes in Underwater Acoustic Sensor Networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a location estimation scheme for underwater acoustic sensor networks. During the first phase, the sink node begins the trapezoid formation process by activating the trapezoid formation agent. It stores relevant information in the sink’s knowledge base and in the node’s knowledge base, and also develops the search data structure required for locating the node. During the second phase, the position of the node is determined by utilizing the search data structure. Identification of the location of all nodes by traveling across the trajectory may be performed as well, as an alternative approach. When identifying the location of one node, the estimation is performed based on the search data structure. When determining the position of all nodes, the sink node agent travels along the defined trajectory and transmits beacon messages which contain the real-time location at specific points. The anchor node agent measures the signal strength and localizes itself and begins estimating the locations of other nodes within the trapezoids, using location estimation techniques. Various performance parameters are used to validate the proposed scheme.
Słowa kluczowe
Rocznik
Tom
Strony
15--31
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Electronics and Communication, Basaveshwar Engineering College, Bagalkot-587102, Karnataka, India
  • Department of Electronics and Communication, Basaveshwar Engineering College, Bagalkot-587102, Karnataka, India
Bibliografia
  • [1] Z. Zhou, Z. Peng, J. Cui, and A. Bagtzoglou, „Scalable localization with mobility prediction for underwater sensor networks", IEEE Trans. on Mob. Comput., vol. 10, no. 3, pp. 335-348, 2011 (DOI: 10.1109/TMC.2010.158).
  • [2] X. Cheng et al., „Silent positioning in underwater acoustic sensor networks", IEEE Trans. Veh. Technol., vol. 57, no. 3, pp. 1756-1766, 2008 (DOI: 10.1109/TVT.2007.912142).
  • [3] Y. S. Uddin, „Low-overhead range-based 3D localization technique for underwater sensor techniques", in Proc. of IEEE Int. Conf. on Commun. ICC 2016, Kuala Lumpur, Malaysia, 2016 (DOI: 10.1109/ICC.2016.7510873).
  • [4] X. Sheng and Y.-H. Hu, „Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks", IEEE Trans. on Sig. Process., vol. 53, no. 1, pp. 44-53, 2005 (DOI: 10.1109/TSP.2004.838930).
  • [5] V. Chandrasekhar and W. Seah, „An area localization scheme for underwater sensor networks", Proc. OCEANS 2006 - Asia Pacific, Singapore, 2006 (DOI: 10.1109/OCEANSAP.2006.4393969).
  • [6] S. Kundu and P. Sadhukhan, „Design and implementation of a time synchronization-free distributed localization scheme for underwater acoustic sensor network", in Proc. of Appl. and Innov. in Mob. Comput AIMoC 2015, Kolkata, India, 2015, pp. 74-80 (DOI: 10.1109/AIMOC.2015.7083833).
  • [7] E. E. Lloyd et al., „UREAL: underwater reection-enabled acoustic-based localization", IEEE Sensors J., vol. 14, no. 11, pp. 3915-3925, 2014 (DOI: 10.1109/JSEN.2014.2357331).
  • [8] R. Hamid et al., „Collision tolerant and collision free packet scheduling for underwater acoustic localization", IEEE Trans. on Wirel. Commun., vol. 14, no. 5, pp. 2584-2595, 2015 (DOI: 10.1109/TWC.2015.2389220).
  • [9] G. Han et al., „Impacts of deployment strategies on localization performance in underwater acoustic sensor networks", IEEE Trans. on Industr. Electron., vol. 62, no. 3, pp. 1725-1733, 2015 (DOI: 10.1109/TIE.2014.2362731).
  • [10] T. V. Nguyen et al., „Least square cooperative localization", IEEE Trans. on Veh. Technol., vol. 64, no. 4, pp. 1318-1330, 2015 (DOI: 10.1109/TVT.2015.2398874).
  • [11] T. Xu et al., „RSS-based sensor localization in underwater acoustic sensor networks", in Proc. of 41st IEEE Int. Conf. on Acoust., Speech and Sig. Process. ICASSP 2016, Shanghai, China, 2016, pp. 3906-3910 (DOI: 10.1109/ICASSP.2016.7472409).
  • [12] A. Savvides, H. Park, and M. B. Srivastava, „The bits and ops of the N-hop multilateration primitive for node localization problems", in Proc. of the 1st ACM Int. Worksh. on Wirel. Sensor Netw. And Appl. WSNA'02, Atlanta, GA, USA, 2002, pp. 112-121 (DOI: 10.1145/570753.570755).
  • [13] A. Savvides, C. C. Han and M. B. Srivastava, „Dynamic fine-grained localization in ad hoc networks of sensors", in Proc. of the 7th Ann. Int. Conf. on Mob. Comput. and Network. MobiCom'01, Rome, Italy, 2001, pp. 166-179, 2001 (DOI: https://doi.org/10.1145/381677.381693).
  • [14] G. Zhu et al., „A distributed localization scheme based on mobili ty prediction for underwater wireless sensor networks", in Proc. of the 26th Chinese Contr. and Decision Conf. CCDC 2014, Changsha, China, 2014, pp. 4863-4867 (DOI: 10.1109/CCDC.2014.6853044).
  • [15] S. Lee and K. Kim, „Localization with a mobile beacon in under-water acoustic sensor networks", Sensors, vol. 12, no. 5, pp. 5486-5501, 2012 (DOI: 10.3390/s120505486).
  • [16] Y. Sun et al., „A mobile anchor node assisted RSSI localization scheme in underwater wireless sensor networks", Sensors, vol. 19, no. 20, 2019 (DOI: 10.3390/s19204369).
  • [17] C. Zhang et al., „A collaborative localization algorithm for UASNs", in Proc. of the Int. Conf. on Comput., Manag. and Telecommun. ComManTel 2014, Da Nang, Vietnam, 2014, pp. 211-216 (DOI: 10.1109/ComManTel.2014.6825606).
  • [18] J. Gao et al., „A double rate localization algorithm with one an chor for multi-hop underwater acoustic networks", Sensors, vol. 17, no. 5, pp. 984-1001, 2017 (DOI: 10.3390/s17050984.
  • [19] M. Beniwal, R. P. Singh, and A. Sangwan, „A localization scheme for underwater sensor networks without time synchronization", Wirel. Pers. Commun., vol. 88, no. 3, 2016 (DOI: 10.1007/s11277-016-3175-2).
  • [20] Y. Zhang, J. Liang, S. Jiang, and W. Chen, „A localization metod for underwater wireless sensor networks based on mobility prediction and particle swarm optimization algorithms", Sensors, vol. 16, no. 2, pp. 212, 2016 DOI: https://dx.doi.org/10.3390/s16020212.
  • [21] Xin Su, I. Ullah, X. Liu, and D. Choi, „A review of underwater localization techniques algorithms and challenges", J. of Sensors, vol. 2020, no. 1, pp. 1-24, 2020 (DOI: 10.1155/2020/6403161).
  • [22] M. de Berg et al., Computational Geometry, 3 ed. Berlin, Heidelberg: Springer, 1983 (ISBN: 9783540779742).
  • [23] B. Zhang et al., „Received signal strength-based underwater acoustic localization considering stratification effect", in Proc. of the OCEANS 2016, Shanghai, China, 2016 (DOI: 10.1109/OCEANSAP.2016.7485561).
  • [24] R. J. Urick, Principles of Underwater Sound, 1 ed. New York: McGraw-Hill, 1983 (ISBN: 9780070660878).
  • [25] W. H. Thorp, „Analytic description of the low frequency attenuation coefficient", J. of Acoustic. Soc. of America, vol. 42, no. 1, pp. 270, 1967 (DOI: 10.1121/1.1910566).
  • [26] W. Zhang et al., „Fault-tolerant relay node placement in wireless sensor networks: Problems and algorithms", in Proc. of the 26th IEEE Int. Conf. on Comp. Commun. INFOCOM 2007, Barcelona, Spain, 2007, pp. 1649-1657 (DOI: 10.1109/INFCOM.2007.193).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2e5fd38-05ba-40b1-bcd6-efdcce74b3f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.