Identyfikatory
Warianty tytułu
Nieinwazyjne metody diagnostyki stopnia zawilgocenia murów obiektów sakralnych
Języki publikacji
Abstrakty
The article contains a description of sacral buildings wall dampness causes. It shows the optimal condition of internal microclimate regarding rooms designed to exhibit historical items. Analysed methods are diagnostic of wall moisture by non-invasive methods. The thermal image examination with the use of microwave electromagnetic radiator was carried out. Two samples of brick were tested; they were exposed to the radiation at the total time of 90 seconds. The nominal power of the radiator was PN=900W. The author analysed other sources of heat radiation. He changed microwave radiation to infrared radiator, and thus the examination was easier and safer. The results shown in the article are the temperatures and infrared radiator test results. The aim is to determine time constant of various radiator work methods. The aim of the analysis was to show temperature distribution at given distances from the radiator, which enabled constant temperature distribution at certain stages of the device running.
W artykule zamieszczono opis przyczyn zawilgocenia murów z cegły ceramicznej obiektów sakralnych. Przedstawiono optymalne warunki mikroklimatu pomieszczeń przeznaczonych do ekspozycji obiektów zabytkowych. Poddano analizie metody diagnostyki zawilgocenia murów metodami nieinwazyjnymi. Przeprowadzono termograficzne pomiary laboratoryjne z wykorzystaniem mikrofalowego promiennika elektromagnetycznego. Badaniom poddano dwie próbki cegieł, które wystawiono na oddziaływanie promieniowania w całkowitym czasie 90s za pomocą manometru. Moc znamionowa promiennika wynosiła PN=900W. Autor poddał analizie inne źródło promieniowania cieplnego, zastąpił promieniowanie mikrofalowe promiennikiem podczerwieni, co ułatwia pomiary i zwiększyło bezpieczeństwo całego pomiaru. W artykule zamieszczono wynik temperatur i badań promiennika podczerwieni w celu wyznaczenia stałych czasowych przy różnych sposobach jego pracy. Celem badania było zobrazowanie rozkładu temperatur w założonych odległościach, co umożliwiło ukazanie bryłowego rozkładu temperatury w danych chwilach pracy urządzenia.
Czasopismo
Rocznik
Tom
Strony
63--69
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
Bibliografia
- 1. Franzoni E, Sandrolini F, Bandini S. An experimental fixture for continuous monitoring of electrical effects in moist masonry walls. Construction and Building Materials 2011; 25: 2023-2029. https://doi.org/10.1016/j.conbuildmat.2010.11.047
- 2. Gentilini C, Franzoni E, Bandini S, Nobile L. Effect of salt crystalization on the shear behaviour of masonry walls: An experimental study. Construction and Building Materials, 2012; 37: 181-189. https://doi.org/10.1016/j.conbuildmat.2012.07.086
- 3. Goetzke-Pala A, Hoła J. Influence of burnt clay brick salinity on mosture content evaluated by nondestructive electric methods. Archives of Civil and Mechanical Engineering 2016; 16(1): 101-111. https://doi.org/10.1016/j.acme.2015.08.001
- 4. Hagman A, Nygårds M. thermographical analysis of paper during tensile testing and comparison to digital image correlation. Experimental Mechanics, 2016: 1-15.
- 5. Jaworski J. Termografia budynków. Dolnośląskie Wydawnictwo Edukacyjne. Wrocław 2000.
- 6. Klepka A, Strączkiewicz M, Pieczonka L, Staszewski WJ, Gelman L, Aymerich F, Uhl T. Triple correlation for detection of damage-related nonlinearities in composite structures. Nonlinear Dynamics, 2015; 81(1):453-468. https://doi.org/10.1007/s11071-015- 2004-6
- 7. Lagüela S, Díaz-Vilariño L, Roca D, Lorenzo H. Aerial thermography from low-cost UAV for the generation of thermographic digital terrain models. Opto - Electronics Review, 2015, 23(1): 76-82. https://doi.org/10.1515/oere-2015-0006
- 8. Mercuri F, Cicero C, Orazi N, Paoloni S, Marinelli M, Zammit U. Infrared thermography applied to the study of cultural heritage. International Journal of Thermophysics, 2015, 36(5): 1189–1194. https://doi.org/10.1007/s10765-014-1645-x
- 9. Oliferuk W. Termografia podczerwieni w nieniszczących badaniach materiałów i urządzeń. Wydawnictwo Biuro Gamma. Warszawa 2008.
- 10. Richter R, Maierhofer Ch, Kreutzbruck M. Numerical method of active termography for reconstruction of back wall geometry. NDT&E International 2013; 54: 189-197.
- 11. Rirsch E, Zhang Z. Rising damp in masonry walls and the importance of mortar properties. Constraction and Building Materials 2010; 24: 1815-1820.
- 12. Swiderski W, Vavilov V. Ultrasonic IR thermographic inspection of graphite epoxy composite: a comparative study of piezoelectric and magnetostrictive stimulation. Opto - Electronics Review, 2015, 23(1): 33-36. https://doi.org/10.1515/oere-2015-0009
- 13. Swiderski W. Detecting defects in marine structures by using eddy current infrared thermography. Applied Optics, 2016, 55( 34): D17-D21. https://doi.org/10.1364/AO.55.000D17
- 14. Wójcik R. Aktualne trendy w ochronie budowli przed wilgocią gruntową – nowe koncepcje. Wybrane zagadnienia rewitalizacji obiektów budowlanych. P. P.-H. Drukarnia Sp. z o.o. Sierpc; 95-106.
- 15. Wójcik R. Pomiary wilgotności przegród budowlanych. Materiały Budowlane 8/2002 Warszawa.
- 16. Wyrwał J, Świrska J. Problemy zawilgocenia przegród budowlanych. PAN, Komitet Inżynierii Lądowej i Wodnej Instytut Podstawowych Problemów Techniki. Studia z zakresu inżynierii nr 44. Warszawa 1998.
- 17. Wysocka-Fotek O, Maj M, Oliferuk W. Use of pulsed ir thermography for determination of size and depth of subsurface defect taking into account the shape of its cross-section area. Archives of Metallurgy and Materials, 2015; 60(2A): 615-620. https://doi.org/10.1515/amm-2015-0181
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2e3765d-3cd1-4d94-bf92-a81711fc8a7b