PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wolno rosnące klony komórek białaczki L5178Y i zagadka wewnątrzklonalnej odnowy popromiennej

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Rocznik
Tom
Strony
37--40
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
autor
  • Centrum Radiobiologii i Dozymetrii Biologicznej, Instytut Chemii i Techniki Jądrowej, Warszawa
Bibliografia
  • [1] J. Z. Beer, I. Szumiel. Slow clones, reduced clonogenicity, and intraclonal recovery in X-irradiated L5178Y-S cell cultures, Radiat. Environ. Biophys. 33 (1994) 125-139.
  • [2] J. Z. Beer, B. Ziemba-Zak, O. Rosiek, J. Sablinski, I. Szumiel, M. Kopeć. Regeneration of proliferative activity in the progeny of murine lymphoma cells L5178Y irradiated with X-rays, Bull. Acad. Pol. Sci. Biol. 18 (1970) 581-584.
  • [3] J. Z. Beer, I. Szumiel. Heritable cell cycle disturbances and late recovery in x-irradiated murine lymphoma L5178Y-S cell populations in vitro, Adv. Exp. Med. Biol. 53 (1975) 497-509.
  • [4] K. R. Trott, O. Hug. Intraclonal recovery of division probability in pedigrees of single x-irradiated mammalian cells. Int. J. Radiat. Biol. 17 (1970) 483-486.
  • [5] L. Gorgojo, J. B. Little. Expression of lethal mutations in progeny of irradiated mammalian cells, Int. J. Radiat. Biol. 55 (1989) 619-630.
  • [6] W. P. Chang, J. B. Little. Delayed reproductive death in X-irradiated Chinese hamster ovary cells, Int. J. Radiat. Biol. 60 (1991) 483-496.
  • [7] W. P. Chang, J. B. Little. Delayed reproductive death as a dominant phenotype in cell clones surviving X-irradiation, Carcinogenesis 13 (1992) 923-928.
  • [8] M. Fitzek, K. R. Trott. Clonal heterogeneity in delayed decrease of plating efficiency of irradiated HeLa cells, Radiat. Environ. Biophys. 32 (1993) 33-39.
  • [9] D. C. Brown, K. R. Trott. Clonal heterogeneity in the progeny of HeLa cells which survive X-irradiation, Int. J. Radiat. Biol. 66 (1994) 151-155.
  • [10] M. M. Elkind, A. Han, K.V. Volz. Radiation response of mammalian cells grown in culture IV. Dose dependence of division delay and post-irradiation growth of surviving and non-surviving Chinese hamster cells, J. Nat. Cancer Inst. 30 (1963) 705-721.
  • [11] W. F. Morgan, A. Hartmann, C. L. Limoli, S. Nagar, B. Ponnaiya. Bystander effects in radiation-induced genomic instability, Mutat. Res. 504 (2002) 91-100.
  • [12] J. B. Little, E. I. Azzam, S. M. de Toledo, H. Nagasawa. Bystander effects: intercellular transmission of radiation damage signals, Radiat. Prot. Dosimetry 99 (2002) 159-162.
  • [13] C. Mothersill, C. Seymour. Radiation-induced bystander effects: Past history and future directions, Radiat. Res. 155 (2001 ) 759-767.
  • [14] K. M. Prise, O. V. Belyakov, M. Folkard, B. D. Michael. Studies of bystander effects in human fibroblasts using a charged particle microbeam, Int. J. Radiat. Biol. 74 (1998) 793-798.
  • [15] I. Szumiel. The bystander effect: is reactive oxygen species the driver? Nukleonika
  • [16] U. Aypar, W. F. Morgan, J. E. Baulch. Radiation-induced genomic instability: are epigenetic mechanisms the missing link? Int. J. Radiat. Biol. 87 (2011) 179-191.
  • [17] O. Kovalchuk, J. E. Baulch. Epigenetic changes and nontargeted radiation effects-is there a link?, Environ Mol. Mutagen. 49 (2008) 16-25.
  • [18] W. F. Morgan. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation? Oncogene 22 (2003) 7094-7099.
  • [19] S. M. Clutton, K. M. Townsend, C. Walker, J. D. Ansell, E. G. Wright. Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures, Carcinogenesis 17 (1996) 1633-1639.
  • [20] C. L. Limoli, A. Hartmann, L. Shephard, C. R. Yang, D. A. Boothman, J. Bartholomew, W. F. Morgan. Apoptosis, reproductive failure, and oxidative stress in Chinese hamster ovary cells with compromised genomic integrity, Cancer Res. 58 (1998) 3712-3718.
  • [21] C. L. Limoli, E. Giedzinski, W. F. Morgan, S. G. Swarts, G. D. Jones, W. Hyun. Persistent oxidative stress in chromosomally unstable cells, Cancer Res 63 (2003) 3107-3111.
  • [22] G. J. Kim, G. M. Fiskum, W. F. Morgan. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability, Cancer Res. 66 (2006) 10377-10383.
  • [23] G. J. Kim, K. Chandrasekaran, W. F. Morgan. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review, Mutagenesis 21 (2006) 361-367.
  • [24] J. K. Leach, T. G. Van, P. S. Lin, R. Schmidt-Ullrich, R. B. Mikkelsen. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen, Cancer Res. 61 (2001) 3894-3901.
  • [25] R. E. Rugo, R. H. Schiestl. Increases in oxidative stress in the progeny of X-irradiated cells, Radiat. Res. 162 (2004) 416-425.
  • [26] T. Yamamori, H. Yasui, M. Yamazumi, Y. Wada, Y. Nakamura, H. Nakamura, O. Inanami. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint, Free Radic. Biol. Med. 53 (2012) 260-270.
  • [27] T. Yoshida, S. Goto, M. Kawakatsu, Y. Urata, T. S. Li. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation, Free Radic. Res. 46 (2012) 147-153.
  • [28] W. F. Morgan, A. Hartmann, C. L. Limoli, S. Naga, B. Ponnaiya. Bystander effects in radiation-induced genomic instability, Mutat. Res. 504 (2002) 91-100.
  • [29] L. Huang, A. R. Snyder, W. F. Morgan. Radiation-induced genomic instability and its implications for radiation carcinogenesis, Oncogene 22 (2003) 5848-5854.
  • [30] D. J. Smiraglia, M. Kulawiec, G. L. Bistulfi, S. G. Gupta, K. K. Singh. A novel role for mitochondria in regulating epigenetic modification in the nucleus, Cancer Biol. Ther. 7 (2008) 1182-1190.
  • [31] M. Takasugi, S. Yagi, K. Hirabayashi, K. Shiota. DNA methylation status of nuclear-encoded mitochondrial genes underlies the tissue-dependent mitochondrial functions. BMC Genomics (2010) 19;11:481.
  • [32] S. Minocherhomji, T. O. Tollefsbol, K. K. Singh. Mitochondrial regulation of epigenetics and its role in human diseases, Epigenetics 7 (2012) 326-334.
  • [33] P. F. Chinnery, H. R. Elliott, G. Hudson, D. C. Samuels, C. L. Relton. Epigenetics, epidemiology and mitochondrial DNA diseases, Int. J Epidemiol. 41 (2012) 177-187.
  • [34] D. Bellizzi, P. D'Aquila, M. Giordano, A. Montesanto, G. Passarino. Global DNA methylation levels are modulated by mitochondrial DNA variants, Epigenomics. 4 (2012) 17-27.
  • [35] O. Kovalchuk, J. E. Baulch. Epigenetic changes and nontargeted radiation effeets-is there a link? Environ. Mol. Mutagen. 49 (2008) 16-25.
  • [36] Y. Ilnytskyy, O. Kovalchuk. Non-targeted radiation effects - an epigenetic connection, Mutat. Res. 714 (2011) 113-125.
  • [37] J. Tamminga, O. Kovalchuk. Role of DNA damage and epigenetic DNA methylation changes in radiation-induced genomic instability and bystander effects in germline in vivo. Curr Mol Pharmacol 4 (2011) 115-125.
  • [38] R. K. Naviaux. Mitochondrial control of epigenetics, Cancer Biol. Ther. 7 (2008) 1191-1193.
  • [39] P. D'Aquila, G. Rose, M. L. Panno, G. Passarino, D. Bellizzi. SIRT3 gene expression: a link between inherited mitochondrial DNA variants and oxidative stress, Gene 497 (2012) 323-329.
  • [40] R. E. Rugo, J. T. Mutamba, K. N. Mohan, T. Yee, J. R. Chaillet, J. S. Greenberger, B. P. Engelward. Methyltransferases mediate cell memory of a genotoxic insult, Oncogene 30 (2011) 751-756.
  • [41] W.Timp, A. P. Feinberg. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat. Rev. Cancer 13 (2013) 497-510.
  • [42] W. C. Copeland, J. T. Wachsman, F. M. Johnson, J. S. Penta. Mitochondrial DNA alterations in cancer. Cancer Invest 20 (2002) 557-569.
  • [43] J. Lu, L. K. Sharma, Y. Bai. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res. 19 (2009) 802-815.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2dc6719-f00d-45a7-a358-9bbe850e1179
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.