PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dissolved oxygen variability in the southern Baltic Sea in 2013-2018

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses changes in the dissolved oxygen concentration (DOC) in the southern Baltic Sea. The oxygenation of the whole water column was estimated. Monthly mean DOCs, as well as a detailed description of the annual surface layer dissolved oxygen (DO) cycle, are presented. The DO cycle at the surface is characterized by two maxima in March/April and November, and by two minima in July/August and December. The DO decline time after the major Baltic inflow (MBI) in 2014 was estimated at about 10 months for the Bornholm Deep and Słupsk Furrow. Whereas the Bornholm Basin was relatively well oxygenated, low oxygen concentrations (<4 mg l−1) were measured in the deep layer of the Gdańsk Deep throughout the inflow period. In addition, the cod spermatozoa activation layer together with the neutral egg buoyancy layer for the Bornholm Basin and Słupsk Furrow are discussed on the basis of the measured DOCs and the variability in hydrographic conditions.
Słowa kluczowe
Czasopismo
Rocznik
Strony
525--537
Opis fizyczny
Bibliogr. 54 poz., mapa, tab., wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Bibliografia
  • [1] Argo, 2018. Argo float data and metadata from Global Data Assembly Centre (Argo GDAC) - Snapshot of Argo GDAC of December 8st 2018. SEANOE, https://doi.org/10.17882/42182#60707.
  • [2] Aro, E., 1989. A review of fish migration patterns in the Baltic. Rapports et Procès-Verbaux des Réunions du Conseil International pour l’Exploration de la Mer 190, 72-96.
  • [3] Bagge, O., Thurow, F., Steffensen, E., Bay, J., 1994. The Baltic cod. Dana 10, 1-28.
  • [4] Bergström, S., Carlsson, B., Gardelin, M., Lindström, G., Pettersson, A., Rummukainen, M., 2001. Climate change impacts on runoff in Sweden — Assessments by global climate models, dynamical downscalling and hydrological modelling. Climate Res. 16, 101-112, https://doi.org/10.3354/cr016101.
  • [5] Berner, M., Borrmann, U., 1985. Zum saisonalen Längenwachstum des Dorsches der Mecklenburger Bucht nach Wiederfangdaten von Markierungsexperimenten und Bestandsvergleichen. Fischerei-Forschung Wissenschaftliche Schriftenreihe 23, 63-69.
  • [6] Bleil, M., Oeberst, R., Urrutia, P., 2009. Seasonal maturity development of Baltic cod in different spawning areas: importance of the Arkona Sea for the summer spawning stock. J. Appl. Ichthyol. 25, 10-17, https://doi.org/10.1111/j.1439-0426.2008.01172.x.
  • [7] Casini, M., Käll, F., Hansson, M., Plikshs, M., Baranova, T., Karlsson, O., Lundström, K., Neuenfeldt, S., Gårdmark, A., Hjelm, J., 2016. Hypoxic areas, density-dependence and food limitation drive the body condition of a heavily exploited marine fish predator. Roy. Soc. Open Sci. 10 (3), https://doi.org/10.1098/rsos.160416.
  • [8] Conley, D. J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B. G., Hietanen, S., Kortekaas, M., Kuosa, H., Meier, M., Müller-Karulis, B., Nordberg, K., Norkko, A., Nürnberg, G., Pitkänen, H., Rabalais, N. N., Rosenberg, R., Savchuk, O. P., Slomp, C. P., Voss, M., Wulff, F., Zillén, L., 2009. Controlling Eutrophication: Nitrogen and Phosphorus. Environ. Sci. Technol. 43 (10), 3412-3420.
  • [9] Diaz, R. J., Rosenberg, R., 2008. Spreading dead zones and consequences for marine ecosystems. Science 321 (5891), 926-929, https://doi.org/10.1126/science.1156401.
  • [10] Eero, M., Hjelm, J., Behrens, J., Buchmann, K., Cardinale, M., Casini, M., Gasyukov, P., Holmgren, N., Horbowy, J., Hüssy, K., Kirkegaard, E., Kornilovs, G., Krumme, U., Köster, F. W., Oeberst, R., Plikshs, M., Radtke, K., Raid, T., Schmidt, J., Tomczak, M. T., Vinther, M., Zimmermann, C., Storr-Paulsen, M., 2015. Eastern Baltic cod in distress: biological changes and challenges for stock assessment. ICES J Mar. Sci. 72 (8), 2180-2186, https://doi.org/10.1093/icesjms/fsv109.
  • [11] Elken, J., 1996. Deep water overflow, circulation and vertical exchange in the Baltic Proper. Estonian Marine Institute, Tallinn, 691 pp.
  • [12] Feistel, R., Nausch, G., Hagen, E., 2006. Unusual inflow activity in 2002-2003 and varying deep-water properties. Oceanologia 48 (S), 21-35.
  • [13] Feistel, R., Nausch, G., Mohrholz, V., Lysiak-Pastuszak, E., Seifert, T., Matthäus, W., Krüger, S., Sehested, H. I., 2003. Warm waters of summer 2002 in the deep Baltic Proper. Oceanologia 45 (4), 571-592.
  • [14] Fischer, H., Matthäus, W., 1996. The importance of the Drogden Sill in the Sound for major Baltic inflows. J. Marine Syst. 9 (3-4), 137-157, https://doi.org/10.1016/S0924-7963(96)00046-2.
  • [15] Franck, U., Matthäus, H., Sammler, R., 1987. Major inflows of saline water into the Baltic Sea during the present century. Gerl. Beitr. Geophys. 96 (6), 517-531.
  • [16] Haavisto, N., Tuomi, L., Roiha, P., Siiriä, S-M., Alenius, P., Purokoski, T., 2018. Argo Floats as a Novel Part of the Monitoring the Hydrography of the Bothnian Sea. Front Mar. Sci. 5, 324 pp, https://doi.org/10.3389/fmars.2018.00324.
  • [17] Hansson, M., Andersson, H., 2016. Oxygen Survey in the Baltic Sea 2016 — Extent of Anoxia and Hypoxia, 1960-2016 , Report Oceanography No. 58.
  • [18] Hüssy, K., 2011. Review of western Baltic cod (Gadus morhua) recruitment dynamics. ICES J Mar. Sci. 68 (7), 1459-1471, https://doi.org/10.1093/icesjms/fsr088.
  • [19] Jankowski, T., Livingstone, D. M., 2003. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: Implications for a warmer world. Limnol. Oceanogr. 51 (2), 815-819, https://doi.org/10.4319/lo.2006.51.2.0815.
  • [20] Jarvie, H. P., Smith, D. R., Norton, L. R., Edwards, F. K., Bowes, M. J., King, S. M., Scarlett, P., Davies, S., Dils, R. M., Bachiller-Jareno, N., 2018. Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: A national perspective on eutrophication. Sci. Total. Environ. 621, 849-862, https://doi.org/10.1016/j.scitotenv.2017.11.128.
  • [21] Köster, F. W., Hinrichsen, H-H., St John, M. A., Schnack, D., MacKenzie, B. R., Tomkiewicz, J., Plikshs, M., 2001. Developing Baltic cod recruitment models. 2. Incorporation of environmental variability and species interaction. Can. J. Fish Aquat. Sci. 58, 1534-1556, https://doi.org/10.1139/f01-093.
  • [22] Köster, F. W., Möllmann, C., Hinrichsen, H-H., Wieland, K., Tomkiewicz, J., Kraus, G., Voss, R., 2005. Baltic cod recruitment — the impact of climate variability on key processes. ICES J. Mar. Sci. 62, 1408-1425, https://doi.org/10.1016/j.icesjms.2005.05.004.
  • [23] Lehmann, A., Lorenz, P., Jacob, D., 2004. Modelling the exceptional Baltic Sea inflow events in 2002-2003. Geophys. Res. Lett. 31, https://doi.org/10.1029/2004GL020830.
  • [24] Matthäus, W., Franck, H., 1992. Characteristics of major Baltic inflows — a statistical analysis. Cont. Shelf Res. 12 (12), 1375-1400, https://doi.org/10.1016/0278-4343(92)90060-W.
  • [25] Matthäus, W., Nehring, D., Feistel, R., Nausch, G., Mohrholz, V., Lass, H., 2008. The Inflow of Highly Saline Water into the Baltic Sea. In: Feistel, R., Nausch, G., Wasmund, N. (Eds.), State and Evolution of the Baltic Sea, 1952-2005, https://doi.org/10.1002/9780470283134.ch10.
  • [26] Meier, H. E. M., Doscher, R., Broman, B., Piechura, J., 2004. The major Baltic inflow in January 2003 and preconditioning by smaller inflows in summer/autumn 2002: a model study. Oceanologia 46 (4), 557-5794.
  • [27] Meier, H. E. M., Feistel, R., Piechura, J., Arneborg, L., Burchard, H., Fiekas, V., Golenko, N., Kuzmina, N., Mohrholz, V., Ch., Nohr, Paka, V. T., Sellschopp, J., Stips, A., Zhurbas, V., 2006. Ventilation of the Baltic Sea deep water: A brief review of prezent knowledge from observations and models. Oceanologia 48 (S), 133-164.
  • [28] Mohrholz, V., 2018. Major Baltic Inflow Statistics — Revised. Front. Mar. Sci. 5, Art. 384, https://doi.org/10.3389/fmars.2018.00384.
  • [29] Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., Gräwe, U., 2015. Fresh oxygen for the Baltic Sea — An exceptional saline inflow after a decade of stagnation. J. Marine Syst. 148, 152-166, https://doi.org/10.1016/j.jmarsys.2015.03.005.
  • [30] Müller, H., 2002. The distribution of ‘Belt Sea cod’ and ‘Baltic cod’ in the Baltic Sea from 1995 to 2001 estimated by discriminant analysis of the number of dorsal fin rays. ICES Document CM 200/L, 16, pp.
  • [31] Nielsen, E. E., Grønkjær, P., Meldrup, D., Paulsen, H., 2005. Retention of juveniles within a hybrid zone between North Sea and Baltic Sea Atlantic cod (Gadus morhua). Can. J. Fish Aquat. Sci. 62, 2219-2225, https://doi.org/10.1139/f05-139.
  • [32] Nielsen, E. E., Hansen, M. M., Ruzzante, D. E., Meldrup, D., Grønkjær, P., 2003. Evidence of a hybrid-zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysis. Mol. Ecol. 12, 1497-1508, https://doi.org/10.1046/j.1365-294x.2003.01819.x.
  • [33] Nielsen, J. R., Lundgren, B., Kristensen, K., Bastardie, F., 2013. Localisation of Nursery Areas Based on Comparative Analyses of the Horizontal and Vertical Distribution Patterns of Juvenile Baltic Cod (Gadus morhua). PloS one 11 (2), https://doi.org/10.1371/journal.pone.0148721.
  • [34] Nissling, A., Westin, L., 1997. Salinity requirements for successful spawning of Baltic and Belt Sea cod and the potential for cod stock interactions in the Baltic Sea. Mar. Ecol. Prog. Ser. 152, 261-271, https://doi.org/10.3354/meps152261.
  • [35] Oschlies, A., Brandt, P., Stramma, L., Schmidtko, S., 2018. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11, 467-473, https://doi.org/10.1038/s41561-018-0152-2.
  • [36] Ostrovskii, A. G., Zatsepin, A. G., Soloviev, V. A., Tsibulsky, A. L., Shvoev, D. A, 2013. Autonomous system for vertical profiling of the marine environment at a moored station. Oceanology+ 53 (2), 233-242, https://doi.org/10.1134/S0001437013020124.
  • [37] Otterlind, G., 1985. Cod migration and transplantation experiments in the Baltic. Z. Angew Ichthyol. 1, 3-16.
  • [38] Piechura, J., Beszczynska-Möller, A., 2004. Inflow waters in the deep regions of the southern Baltic Sea — transport and transformations. Oceanologia 46 (1), 113-141.
  • [39] Rak, D., 2016. The inflow in the Baltic Proper as recorded in January-February 2015. Oceanologia 58 (3), 241-247, https://doi.org/10.1016/j.oceano.2016.04.001.
  • [40] Rak, D., Wieczorek, P., 2012. Variability of temperature and salinity over the last decade in selected regions of the southern Baltic Sea. Oceanologia 54 (3), 339-354, https://doi.org/10.5697/oc.54-3.339.
  • [41] Reissmann, J., Burchard, H., Feistel, R., Hagen, E., Lass, H. U., Mohrholz, V., Nausch, G., Umlauf, L., Wieczorek, W., 2009. State-of-the-art review on vertical mixing in the Baltic Sea and consequences for eutrophication. Prog. Oceanogr. 82, 47-80, https://doi.org/10.1016/j.pocean.2007.10.004.
  • [42] Renk, H., 1974. Primary production and chlorophyll content of the Baltic Sea. Part III. Primary production in the Baltic, Hydrobiologia 21, 191 pp.
  • [43] Rohlf, N., 1999. Verhaltensänderungen der Larven des Ostseedorsches (Gadus morhua callarias) während der Dottersackphase. Berichte aus dem Institut für Meereskunde, 312 pp.
  • [44] Rose, A. G., Marteinsdottir, G., Godø, O., 2018. Atlantic Cod: A Bio-Ecology. Chapter 7. Wiley and Sons Ltd., 287-336.
  • [45] Schinke, H., Matthäus, W., 1998. On the causes of major Baltic inflows — an analysis of long time series. Cont. Shelf Res. 18, 67-97.
  • [46] Siiriä, S., Roiha, P., Tuomi, L., Purokoski, T., Haavisto, N., Alenius, P., 2019. Applying area-locked, shallow water Argo floats in Baltic Sea monitoring. J. Oper. Oceanogr. 12 (1), 58-72, https://doi.org/10.1080/1755876X.2018.1544783.
  • [47] Stigebrandt, A., Kalén, O., 2013. Improving oxygen conditions in the deeper parts of Bornholm Sea by pumped injection of winter water. Ambio 42 (5), 587-595, https://doi.org/10.1007/s13280-012-0356-4.
  • [48] Viktorsson L., Almroth-Rosell E., Tengberg A., Vankevich R., Neelov I., Isaev A., Kravtsov V., Hall POJ. Benthic phosphorus dynamics in the Gulf of Finland, Baltic Sea. Aquat. Geochem. 18, 543-564, https://doi.org/10.1007/s10498-011-9155-y.
  • [49] Vitale, F., Börjesson, P., Svedäng, H., Casini, M., 2008. The spatial distribution of cod (Gadus morhua L.) spawning grounds in the Kattegat, eastern North Sea. Fish. Res. 90, 36-44, https://doi.org/10.1016/j.fishres.2007.09.02.
  • [50] Vitale, F., Cardinale, M., Svedäng, H., 2005. Evaluation of the temporal development of the ovaries in Gadus morhua from the Sound and Kattegat, North Sea. J. Fish Biol. 67 (3), 669-683, https://doi.org/10.1111/j.0022-1112.2005.00767.x.
  • [51] Walker, J. C. G., 1980. The oxygen cycle in the natural environment and the biogeochemical cycles. Springer-Verlag, Berlin, 87-104.
  • [52] Wieland, K., Jarre-Teichmann, A., Horbowa, K., 2000. Changes in the timing of spawning of Baltic cod: possible causes and implications for recruitment. ICES J. Mar. Sci. 57, 452-464, https://doi.org/10.1006/jmsc.1999.0522.
  • [53] Wieland, K., Waller, U., Schnack, D., 1994. Development of Baltic cod eggs at different levels of temperature and oxygen content. Dana 10, 163-177.
  • [54] Woźniak, B., Hapter, R., Dera, J., 1989. Light curves of marine plankton photosynthesis in the Baltic. Oceanologia 27, 61-78.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2dad5fa-ac54-4cf9-9460-65e78579c0b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.