Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Modern production of non-ferrous metals is imperfect due to the loss of rock mass and metal in the technological chain ore mining to metal production. Processing of zinc oxide and oxidized copper ores by hydrometallurgical, pyrometallurgical and flotation methods is associated with formation of dump cakes, clinkers and flotation tailings. Therefore, all these methods are characterized by a low coefficient of complex use of raw materials (for example, for the Waelz process this coefficient is not higher than 35%). To increase the degree of complex processing of oxide raw materials, it is necessary to change the attitude to raw materials and create industrial technologies based on new principles. The article presents theoretical and applied research results on complex processing of oxidized copper and zinc oxide ores based on the new attitude to raw materials and new effective technologies allowing us to increase significantly the level of raw materials’ complex processing. Theoretical regularities, features and optimal technological parameters of new methods of complex processing of oxide, zinc and oxidized copper ores were found based on the ideology of a universal technological raw material and the simultaneous production of several products in one furnace unit.
Słowa kluczowe
Rocznik
Tom
Strony
226--249
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- M.Auezov South Kazakhstan University
autor
- National Center on complex processing of mineral raw materials of the Republic of Kazakhstan
autor
- National Center on complex processing of mineral raw materials of the Republic of Kazakhstan
autor
- National Center on complex processing of mineral raw materials of the Republic of Kazakhstan
Bibliografia
- AHMADI, M. A., SHADIZADEH, S. R., SALARI, Z., 2014. Dependency of critical micellization concentration of an anionic surfactant on temperature and potassium chloride salt. Petrol. Sci. Technol. 33, 1913-1920.
- BUSSCHER, H. J., VAN DE BELT-GRITTER, B., VAN DER MEI, H.C., 1995. Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity 1. Zeta potentials of hydrocarbon droplets. Colloid. and Surface. B. 5, 111-116.
- CEBECI, Y., 2002. The investigation of the floatability improvement of Yozgat Ayridam lignite using various collectors. Fuel 81, 281-289.
- CHANG, Z., CHEN, X., PENG, Y., 2017. Understanding and improving the flotation of coals with different degrees of surface oxidation. Powder Technol. 321, 190-196.
- CHANG, Z., CHEN, X., PENG, Y., 2018. The adsorption behavior of surfactants on mineral surfaces in the presence of electrolytes - A critical review. Miner. Eng. 121, 66-76.
- CHANG, Z., CHEN, X., PENG, Y., 2018. The effect of saline water on the critical degree of coal surface oxidation for coal flotation. Miner. Eng. 119, 222-227.
- CHANG, Z., CHEN, X., PENG, Y., 2019. The interaction between diesel and surfactant Triton X-100 and their adsorption on coal surfaces with different degrees of oxidation. Powder Technol. 342, 840-847.
- DC HENRY, M., 1931. The cataphoresis of suspended particles. Part I.—The equation of cataphoresis. Proc. R. Soc. Lond. A 133, 106-129.
- DEY, S., 2012. Enhancement in hydrophobicity of low rank coal by surfactants - A critical overview. Fuel Process. Technol. 94, 151-158.
- DOMINGUEZ, H., 2009. Structure of the Sodium Dodecyl Sulfate Surfactant on a Solid Surface in Different NaCl Solutions. Langmuir 25, 9006-9011.
- GUI, X., XING, Y., WANG, T., CAO, Y., MIAO, Z., XU, M., 2017. Intensification mechanism of oxidized coal flotation by using oxygen-containing collector α-furanacrylic acid. Powder Technol. 305, 109-116.
- HARRIS, G.H., DIAO, J., FUERSTENAU D.W., 1995. Coal flotation with nonionic surfactants. Coal Prep. 16, 135-147.
- HSU, J.-P., NACU, A., 2003. Behavior of soybean oil-in-water emulsion stabilized by nonionic surfactant. J. Colloid Interface Sci. 259, 374-381.
- KURNIAWAN, A., OZDEMIR, O., NGUYEN, A., OFORI, P., FIRTH, B., 2011. Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of Dowfroth 250. Int. J. Miner. Process. 98, 137-144.
- LASKOWSKI, J. S., 2001. Reagents. Coal Flotation and Fine Coal Utilization, 120~124.
- LIU, D., PENG, Y., 2014. Reducing the entrainment of clay minerals in flotation using tap and saline water. Powder Technol. 253, 216-222.
- LIU, S., WU, B., YANG, X., 2014. Electrolyte-induced reorganization of SDS self-assembly on graphene: A Molecular simulation study. ACS Appl. Mater. Inter. 6(8): 5789-5797.
- LIU, W., MORAN, C., VINK, S., 2013. A review of the effect of water quality on flotation. Miner. Eng. 53, 91-100.
- MEI, Z., XU, J., SUN, D.J., 2011. O/W nano-emulsions with tunable PIT induced by inorganic salts. Colloid. Surface. A. 375, 102-108.
- NEVSKAIA, D.M., GUERRERO-RUIZ, A., LOPEZ-GONZALEZ, J.D.D., 1996. Adsorption of polyoxyethylenic surfactants on quartz, kaolin, and dolomite: A correlation between surfactant structure and solid surface nature. J. Colloid Interf. Sci. 181, 571-580.
- OFORI, P., FIRTH, B., MCNALLY, C., NGUYEN, A., 2010. Working effectively with saline water in coal preparation. ACARP Project Report C17046. Australian Coal Association Research Program.
- POSTMUS, B.R., LEERMAKERS, F.A.M., COHEN STUART, M.A., 2008. Self-consistent field modeling of poly(ethylene oxide) adsorption onto silica: The multiple roles of electrolytes. Langmuir 24, 1930-1942.
- QU, J., TAO, X., HE, H., ZHANG, X., XU, N., ZHANG, B., 2015. Synergistic effect of surfactants and a collector on the flotation of a low-rank coal. Int. J. Coal Prep. Util. 35(1): 14-24.
- JIA, R., HARRIS, G.H., FUERSTENAU, D., W., 2000. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. Int. J. Miner. Process. 58, 99~118.
- SARIKAYA, M., OZBAYOGLU, GULHAN, 1995, Flotation characteristics of oxidized coal. Fuel 74, 291-294.
- SUN, S.C. 1954. Effects of oxidation of coals on their flotation properties. Trans. AIME 199, 396-401.
- WANG, B., PENG, Y., 2014. The effect of saline water on mineral flotation – A critical review. Miner. Eng. 66, 13-24.
- WANG, B., PENG, Y., 2014. The interaction of clay minerals and saline water in coarse coal flotation. Fuel 134, 326-332.
- WANG, S., TANG, L., TAO, X., 2018. Investigation of effect of surfactants on the hydrophobicity of low rank coal by sliding time measurements. Fuel 212, 326-331.
- XING, R., RANKIN S.E., 2013. Three stage multilayer formation kinetics during adsorption of an anionic fluorinated surfactant onto germanium: Solution pH and salt effects. J. Colloid Interf. Sci. 401, 88-96.
- XING, Y., GUI, X., CAO, Y., WANG, Y., XU, M., WANG, D., and LI, C., 2017. Effect of compound collector and blending frother on froth stability and flotation performance of oxidized coal. Powder Technol. 305, 166-173.
- YOON, R., 1982. Flotation of coal using micro-bubbles and inorganic salts. Min. Congr. J., Virginia Polytechnic Inst. And State Univ., Blacksburg (USA). Virginia Center for Coal and Energy Research. 68: Pages: 76-80.
- YOON, R., SANEY, J. B., 1982. Coal flotation in inorganic salt solutions, Virginia Polytechnic Inst. and State Univ., Blacksburg (USA). Virginia Center for Coal and Energy Research: 119.
- YU, D., WANG, Y., ZHANG J., TIAN M., HAN, Y., WANG, Y., 2012. Effects of calcium ions on solubility and aggregation behavior of an anionic sulfonate gemini surfactant in aqueous solutions. J. Colloid Interf. Sci. 381, 83-88.
- ZHANG, J., MENG, Y., TIAN, Y., ZHANG, X., 2015. Effect of concentration and addition of ions on the adsorption of sodium dodecyl sulfate on stainless steel surface in aqueous solutions. Colloid. Surface. A. 484, 408-415.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2d73163-2996-4cea-b845-171ab2c4dda0