Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we use the notion of lacunary statistical convergence of order (α, β), to introduce new sequence spaces by lacunary sequence, invariant means defined by Musielak-Orlicz function M = (ℵk). We also examine some topological properties and prove inclusion relations between newly constructed sequence spaces.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20240003
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
- School of Information & Physical Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
autor
- Department of Mathematics, Faculty of Science, University of Tabuk, PO Box 4279, Tabuk 71491, Saudi Arabia
autor
- School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India
autor
- Fujian Provincial Key Laboratory of Data-Intensive Computing, Key Laboratory of Intelligent Computing and Information Processing, School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou 362000, China
Bibliografia
- [1] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), no. 1, 104–110.
- [2] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190.
- [3] A. Zygmund, Trignometrical Series of Monographs de Matematicas, Warszawa-Lwów, 1935.
- [4] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), no. 3-4, 241–244.
- [5] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74.
- [6] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), no. 5, 361–375.
- [7] T. Šalát, On statistical convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139–150.
- [8] J. A. Fridy, On the statistical convergence, Analysis 5 (1985), 301–303.
- [9] R. Çolak and Ç.A. Bektaş, λ-Statistical convergence of order α, Acta Math. Sci. 31 (2011) no. 3, 953–959.
- [10] H. Şengül and M. Et, On Lacunary statistical convergence of order α, Acta Math. Sci. Ser. B (Engl. Ed.) 34 (2014), no. 2, 473–482.
- [11] M. Et and H. Şengül, Some Cesàro-type summability spaces of order α and lacunary statistical convergence of order α, Filomat 28 (2014), no. 8, 1539–1602.
- [12] N. D. Aral and M. Et, Generalized difference sequence spaces of fractional order defined by Orlicz functions, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 69 (2020), no. 1, 941–951.
- [13] A. Esi and M. Et, Statistical semiperiodic sequence spaces and [f] -lacunary statistically convergence, Far East J. Math. Sci. 6 (1998), no. 5, 831–838.
- [14] B. Hazarika and A. Esi, On generalized statistical convergence of sequences of sets of order α, Mislock Math. Notes 17 (2016), no. 2, 893–910.
- [15] I. Haque, J. Ali, and M. Mursaleen, Solvability of implicit fractional order integral equation in ℓp(1≤p<∞)space via generalized Darbo’s fixed point theorem, J. Funct. Spaces 2022 (2022), 1674243.
- [16] H. Şengül, Some Cesàro-type summability spaces defined by a modulus function of order (α,β), , Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat 66 (2017), no. 2, 80–90.
- [17] A. R. Freedman, J. J. Sember, and M. Raphael, Some Cesàro-type summability spaces, Proc. London Math. Soc. 37 (1978), 508–520. [18] H. Şengül, On Sαβ(θ)-convergence and strong Nαβ(θ,p)-summability, J. Nonlinear Sci. Appl. 10 (2017), no. 9, 5108–5115.
- [19] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), no. 24, 169–176.
- [20] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J. Math. 21 (1995), no. 4, 377–386.
- [21] P. Baliarsingh, Some new difference sequence spaces of fractional order and their dual spaces, Appl. Math. Comput. 219 (2013), no. 18, 9737–9742.
- [22] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (2001), 631–639.
- [23] M. Mursaleen and S. K. Sharma, Entire sequence spaces defined on locally convex Hausdorff topological space, Iran. J. Sci. Technol. Trans. Sci. 38 (2014), 105–109.
- [24] M. Mursaleen, S. K. Sharma, and A. Kiliçman, Sequence spaces defined by Musielak-Orlicz function over n-normed spaces Abstr. Appl. Anal. 2013 (2013), 364743.
- [25] M. Mursaleen, S. K. Sharma, S. A. Mohiuddine, and A. Kiliçman, New difference sequence spaces defined by Musielak-Orlicz function, Abstr. Appl. Anal. 2014 (2014), 691632.
- [26] R. Aslan, Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators, Kuwait J. Sci. 51 (2024), no. 1, 100168.
- [27] M. Ayman-Mursaleen and S. Serra-Capizzano, Statistical convergence via q-calculus and a Korovkinas type approximation theorem, Axioms 11 (2022), no. 2, 70.
- [28] M. Ayman-Mursaleen, M. Nasiruzzaman, N. Rao, M. Dilshad, and K. S. Nisar, Approximation by the modified λ-Bernstein-polynomial in terms of basis function, AIMS Math. 9 (2024), 4409–4426.
- [29] M. Heshamuddin, N. Rao, B. P. Lamichhane, A. Kiliçman and M. Ayman-Mursaleen, On one- and two-dimensional α-Stancu-Schurer-Kantorovich operators and their approximation properties, Mathematics 10 (2022), 3227.
- [30] M. Nasiruzzaman, A. Kiliçman, and M. Ayman-Mursaleen, Construction of q-Baskakov operators by wavelets and approximation properties, Iran. J. Sci. Technol. Trans. Sci. 46 (2022), 1495–1503.
- [31] E. Savaş and M. Mursaleen, Bézier type Kantorovich q-Baskakov operators via wavelets and some approximation properties, Bull. Iran. Math. Soc. 49 (2023), 68.
- [32] M. Ayman-Mursaleen, B. P. Lamichhane, A. Kiliçman, and N. Senu, On q-statistical approximation of wavelets aided Kantorovich q-Baskakov operators, Filomat 38 (2024), 3261–3274.
- [33] S. A. Mohiuddine, S. K. Sharma, and D. A. Abuzaid, Some seminormed difference sequence spaces over n-normed spaces defined by a Musielak-Orlicz function of order (α,β), J. Funct. Spaces 2018 (2018), 4312817.
- [34] S. K. Sharma, S. A. Mohiuddine, A. K. Sharma, and T. K. Sharma, Sequence spaces over n-normed spaces defined by Musielak-Orlicz function of order (α, β), Facta Univ. Ser. Math. Inform. 33 (2018), no. 5, 721–738.
- [35] J. Musielak, Orlicz Spaces and Modular Spaces, vol. 1034 of Lecture Notes in Mathematics, Springer, Berlin, 1983.
- [36] Q.-B. Cai, S. K. Sharma, and M. Ayman-Mursaleen, A note on lacunary sequence spaces of fractional difference operator of order (α,β), J. Funct. Spaces 2022 (2022), 2779479.
- [37] M. Ayman-Mursaleen, A note on matrix domains of Copson matrix of order α and compact operators, Asian-Eur. J. Math. 15 (2022), no. 7, 2250140.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2cba987-507c-46e6-a227-960492e8f3bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.