PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Compressive Deformation Behavior of an Ultrafine/Nano Grained AZ31 Magnesium Processed by Accumulative Back Extrusion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An AZ31magneium alloy was processed through accumulative back extrusion (ABE) process at 280 °C up to six passes. Compressive deformation behavior of the processed materials was studied by employing uniaxial compression tests at room temperature. The results indicated that grains of 80 nm to 1 µm size were formed during accumulative back extrusion, where the mean grain size of the experimental material was reduced by applying successive ABE passes. A deformation texture characterizing with the basal plane mainly lie inclined to the deformation axis was developed. Compressive yield and maximum compressive strengths were measured to increase by applying successive extrusion passes, while the strain-to-fracture dropped. The evolution of mechanical properties was explained relying on the grain refinement effect as well as texture change. It was described that the share of different deformation mechanisms and developing of shearing regions near the grain boundaries may influence the deformation behavior of the ultrafine/nano grained AZ31 alloy.
Twórcy
autor
  • Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran (Islamic Republic of)
  • School of Materials & Metallurgical Engineering, University of Tehran, Tehran, Iran (Islamic Republic of)
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences (PAS), 25 Reymonta Street, 30-059 Kraków, Poland
Bibliografia
  • [1] M. Yoo, Metallurgical Transactions A 12, 409-418 (1981).
  • [2] S. Fatemi-Varzaneh, A. Zarei-Hanzaki, M. Haghshenas, Journal of Alloys and Compounds 475, 126-130 (2009).
  • [3] A. Beer, in, Deakin University, 2004. PhD Thesis.
  • [4] Y. Chen, Q. Wang, J. Lin, L. Zhang, C. Zhai, Journal of Materials Science 42, 7601-7603 (2007).
  • [5] R. Figueiredo, P. Cetlin, T. Langdon, Acta Materialia 55, 4769-4779 (2007).
  • [6] R. B. Figueiredo, T. G. Langdon, Journal of Materials Science 44, 4758-4762 (2009).
  • [7] J. Wang, D. Zhang, Y. Li, Z. Xiao, J. Fouse, X. Yang, Materials & Design 86, 526-535, (2015).
  • [8] H. Wang, P. Wu, J. Wang, Computational Materials Science 96, 214-218 (2015).
  • [9] W. Kim, C. An, Y. Kim, S. Hong, Scripta Materialia 47, 39-44 (2002).
  • [10] J. Xing, X. Yang, H. Miura, T. Sakai, Materials Transactions 49, 69-75 (2008).
  • [11] W. Yuan, S. Panigrahi, J. Q. Su, R. Mishra, Scripta Materialia 530, 994-997 (2011).
  • [12] Z. Zuberova, Y. Estrin, T. Lamark, M. Janecek, R. Hellmig, M. Krieger, Journal of Materials Processing Technology 184, 294-299 (2007).
  • [13] H. Miura, T. Maruoka, X. Yang, J. Jonas, Scripta Materialia 66, 49-51 (2011).
  • [14] H. Miura, G. Yu, X. Yang, Materials Science and Engineering: A, 528, 6981-6992 (2011).
  • [15] M. Pérez-Prado, O. Ruano, Scripta Materialia 51, 1093-1097 (2004).
  • [16] C. Su, L. Lu, M. Lai, Materials Science and Engineering: A 434, 227-236 (2006).
  • [17] C. Xu, Z. Horita, T. G. Langdon, Acta Materialia 55, 203-212 (2007).
  • [18] Y. Wang, E. Ma, Acta Materialia 52, 1699-1709 (2004).
  • [19] Q. Yang, A. Ghosh, Acta Materialia 54, 5159-5170 (2006).
  • [20] Z. Zúberová, Y. Estrin, T. Lamark, M. Janecek, R. Hellmig, M. Krieger, Journal of Materials Processing Technology 184, 294-299 (2007).
  • [21] S. Fatemi-Varzaneh, A. Zarei-Hanzaki, Materials Science and Engineering: A 504, 104-106, (2009).
  • [22] S. Fatemi-Varzaneh, A. Zarei-Hanzaki, M. Naderi, A. A. Roostaei, Journal of Alloys and Compounds 507, 207-214 (2010).
  • [23] S. Fatemi-Varzaneh, A. Zarei-Hanzaki, R. Vaghar, J. Cabrera, Materials Science and Engineering: A 551, 128-132 (2012).
  • [24] S. Fatemi-Varzaneh, A. Zarei-Hanzaki, Materials Science and Engineering: A 528, 1334-1339 (2011).
  • [25] S. Fatemi-Varzaneh, A. Zarei-Hanzaki, H. Paul, Materials Characterization 87, 27-35 (2014).
  • [26] J. Li, W. Xu, X. Wu, H. Ding, K. Xia, Materials Science and Engineering: A, 528, 5993-5998 (2011).
  • [27] Q. Yang, A. Ghosh, Acta materialia 54, 5147-5158 (2006).
  • [28] C. Caceres, C. Davidson, J. Griffiths, C. Newton, Materials Science and Engineering A 325, 344-355 (2002).
  • [29] Z. Trojanova, C. Caceres, Scripta Materialia 56, 793-796 (2007).
  • [30] M. Dahms, H. J. Bunge, Journal of Applied Crystallography 22, 439-447 (1989).
  • [31] M. Barnett, Materials Science and Engineering: A 464, 8-16 (2007).
  • [32] M. Meyers, O. Vöhringer, V. Lubarda, Acta Materialia 49, 4025-4039 (2001).
  • [33] R. Lapovok, P. Thomson, R. Cottam, Y. Estrin, Journal of Materials Science 40, 1699-1708 (2005).
  • [34] S. Yin, C. Wang, Y. Diao, S. Wu, S. Li, Journal of Materials Science & Technology 27, 29-34, (2011).
  • [35] Y. Wang, J. Huang, Acta Materialia 55, 897-905 (2007).
  • [36] M. Barnett, Z. Keshavarz, A. Beer, D. Atwell, Acta Materialia 52, 5093-5103 (2004).
  • [37] M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, S.R. Kalidindi, Acta Materialia 58, 6330-6242 (2010).
  • [38] H. Yan, R. Chen, E. Han, Materials Science and Engineering: A 527, 3317-3322 (2010).
  • [39] J. Del Valle, F. Carreno, O. Ruano, Acta Materialia 54, 4247-4259 (2006).
  • [40] J. Koike, Metallurgical and Materials Transactions A 36, 1689-1696 (2005).
  • [41] J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, Acta Materialia 51, 2055-2065 (2003).
  • [42] H. Yoshinaga, T. Obara, S. Morozumi, Materials Science and Engineering 12, 255-264 (1973).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2be16fb-78aa-4769-b69e-b30a17bed3de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.