PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High sensitivity microsensor assisted by Fano resonance in InSb based terahertz plasmonic waveguide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We propose a compact terahertz plasmonic structure comprising an InSb-dielectric-InSb waveguideside-coupled with two stub resonators. Due to the coherent interference of the splitting discrete andquasi-continuum modes, the reflection spectrum possesses a sharp asymmetric Fano resonance dip, which stems from the phase difference between the two stub resonators. Owing to the permittivity temperature dependent property of InSb, the Fano resonance dip can be actively controlled by tuning temperature. The physical features contribute to a highly efficient plasmonic sensor for both refractive index and temperature sensing. The microsensor yields a sensitivity of ̴2.9 THz/RIUand 1.8 × 10–3 THz/°C. This multiparameter high sensitivity microsensor may find important applications in medical sensing, biosensing and on-chip sensing working in terahertz region.
Słowa kluczowe
Czasopismo
Rocznik
Strony
585--596
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
  • Laboratory of Infrared Material and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo 315211, China
  • Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
  • Laboratory of Infrared Material and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo 315211, China
autor
  • Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
  • Laboratory of Infrared Material and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo 315211, China
Bibliografia
  • [1] BOZHEVOLNYI S.I., VOLKOV V.S., DEVAUX E., LALUET J.-Y., EBBESEN T.W., Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators, Nature 440, 2006,pp. 508–511, DOI:10.1038/nature04594.
  • [2] LI Y., AN B., JIANG S., GAO J., CHEN Y., PAN S., Plasmonic induced triple-band absorber for sensor application, Optics Express 23(13), 2015, pp. 17607–17612, DOI:10.1364/OE.23.017607.
  • [3] LIU N., MESCH M., WEISS T., HENTSCHEL M., GIESSEN H., Infrared perfect absorber and its applicationas plasmonic sensor, Nano Letters 10(7), 2010, pp. 2342–2348, DOI:10.1021/nl9041033.
  • [4] WU W., YANG J., ZHANG J., HUANG J., CHEN D., WANG H., Ultra-high resolution filter and optical field modulator based on a surface plasmon polariton, Optics Letters 41(10), 2016, pp. 2310–2313, DOI:10.1364/OL.41.002310.
  • [5] WANG H., YANG J., ZHANG J., HUANG J., WU W., CHEN D., XIAO G., Tunable band-stop plasmonic wave-guide filter with symmetrical multiple-teeth-shaped structure, Optics Letters 41(6), 2016, pp. 1233–1236,DOI:10.1364/OL.41.001233.
  • [6] ZAVVARI M., TALEB HESAMI AZAR M., ARASHMEHR A., Tunable band-stop plasmonic filter based on square ring resonators in a metal-insulator-metal structure, Journal of Modern Optics 64(20), 2017,pp. 2221–2227, DOI:10.1080/09500340.2017.1349195.
  • [7] SAHU P.P., Theoretical investigation of all optical switch based on compact surface plasmonic two mode interference coupler, Journal of Lightwave Technology 34(4), 2015, pp. 1300–1305.
  • [8] WANG G., LU H., LIU X., GONG Y., Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating, Nanotechnology 23(44), 2012, article ID 444009, DOI:10.1088/0957-4484/23/44/444009.
  • [9] NOZHAT N., GRANPAYEH N., All-optical nonlinear plasmonic ring resonator switches, Journal of Modern Optics 61(20), 2014, pp. 1690–1695, DOI:10.1080/09500340.2014.951008.
  • [10] KUANG D., DONG L., CAO Y., Tuning of plasmonic nanofocusing with non-linear metallic helical nanocone, Plasmonics 12, 2017, pp. 685–690, DOI:10.1007/s11468-016-0314-2.
  • [11] NIU L., XIANG Y., LUO W., CAI W., QI J., ZHANG X., XU J., Nanofocusing of the free-space optical energy with plasmonic Tamm states, Scientific Reports 6, 2016, article ID 39125, DOI:10.1038/srep39125.
  • [12] CHEN X., LINDQUIST N.C., KLEMME D.J., NAGPAL P., NORRIS D.J., OH S.-H., Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing, Nano Letters 16(12), 2016, pp. 7849–7856, DOI:10.1021/acs.nanolett.6b04113.
  • [13] WU D., LIU Y., YU L., YU Z., CHEN L., LI R., MA R., LIU C., ZHANG J., YE H., Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor, Scientific Reports 7, 2017, article ID 45210, DOI:10.1038/srep45210.
  • [14] ZHAO C., SONG X., JIAO R., DUAN G., WANG L., YU L., Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting, IEEE Photonics Journal 7(6), 2015, pp. 1–8, DOI:10.1109/JPHOT.2015.2492550.
  • [15] WEI Z., LI X., ZHONG N., TAN X., ZHANG X., LIU H., MENG H., LIANG R., Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device, Plasmonics 12, 2017, pp. 641–647, DOI:10.1007/s11468-016-0309-z.
  • [16] CHEN C., SHENG Y., JUN W., Computed a multiple band metamaterial absorber and its application basedon the figure of merit value, Optics Communications 406, 2018, pp. 145–150, DOI:10.1016/j.optcom.2017.06.009.
  • [17] YANG W.H., ZHANG C., SUN S., JING J., SONG Q., XIAO S., Dark plasmonic mode based perfect absorption and refractive index sensing, Nanoscale 9(26), 2017, pp. 8907–8912, DOI:10.1039/C7NR02768K.
  • [18] WU D., LI R., LIU Y., YU Z., YU L., CHEN L., LIU C., MA R., YE H., Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region, Nanoscale Research Letters 12, 2017, article ID 427, DOI:10.1186/s11671-017-2203-9.
  • [19] BOLLER K.-J., IMAMOĞLU A., HARRIS S.E., Observation of electromagnetically induced transparency, Physical Review Letters 66(20), 1991, pp. 2593–2596, DOI:10.1103/PhysRevLett.66.2593.
  • [20] CHEN J., GAN F., WANG Y., LI G., Plasmonic sensing and modulation based on Fano resonances, Advanced Optical Materials 6(9), 2018, article ID 1701152, DOI:10.1002/adom.201701152.
  • [21] TONOUCHI M., Cutting-edge terahertz technology, Nature Photonics 1, 2007, pp. 97–105, DOI:10.1038/nphoton.2007.3.
  • [22] FERGUSON B., ZHANG X.C., Materials for terahertz science and technology, Nature Materials 1, 2002,pp. 26–33, DOI:10.1038/nmat708.
  • [23] CHERNOMYRDIN N.V., SCHADKO A.O., LEBEDEV S.P., TOLSTOGUZOV V.L., KURLOV V.N., RESHETOV I.V., SPEKTOR I.E., SKOROBOGATIY M., YURCHENKO S.O., ZAYTSEV K.I., Solid immersion terahertz imagingwith sub-wavelength resolution, Applied Physics Letters 110(22), 2017, article ID 221109, DOI:10.1063/1.4984952.
  • [24] SMITH R., JOOSHESH A., ZHANG J., DARCIE T., Photoconductive generation and detection of THz-band-width pulses using near-field coupling to a free-space metallic slit waveguide, Optics Express 25(22),2017, pp. 26492–26499, DOI:10.1364/OE.25.026492.
  • [25] GAO F., ZHU Z., XU W., ZHANG J., GUO C., LIU K., YUAN X., QIN S., Broadband wave absorption insingle-layered and nonstructured graphene based on far-field interaction effect, Optics Express 25(9),2017, pp. 9579–9586, DOI:10.1364/OE.25.009579.
  • [26] HU B., WANG Q.J., ZHANG Y., Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons, Optics Letters 37(11), 2012, pp. 1895–1897, DOI:10.1364/OL.37.001895.
  • [27] TAO J., HU B., HE X.Y., WANG Q.J., Tunable subwavelength terahertz plasmonic stub waveguide filters, IEEE Transactions on Nanotechnology 12(6), 2013, pp. 1191–1197, DOI:10.1109/TNANO.2013.2285127.
  • [28] HU B., TAO J., ZHANG Y., WANG Q.J., Magneto-plasmonics in graphene-dielectric sandwich, Optics Express 22(18), 2014, pp. 21727–21738, DOI:10.1364/OE.22.021727.
  • [29] LI W., KUANG D., FAN F., CHANG S., LIN L., Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure, Applied Optics 51(29), 2012, pp. 7098–7102, DOI:10.1364/AO.51.007098.
  • [30] GIRARD M., SKOROBOGATIY M., Integrated terahertz multiparameter sensors using fiber/frequency selective surface couplers, Journal of Optics 16(9), 2014, article ID 094007, DOI:10.1088/2040-8978/16/9/094007.
  • [31] SÁNCHEZ-GIL J.A., RIVAS J.G., Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces, Physical Review B 73(20), 2006, article ID 205410, DOI:10.1103/PhysRevB.73.205410.
  • [32] OSZWAŁLDOWSKI M., ZIMPEL M., Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb, Journal of Physics and Chemistry of Solids 49(10), 1988, pp. 1179–1185, DOI:10.1016/0022-3697(88)90173-4.
  • [33] HOWELLS S.C., SCHLIE L.A., Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz, Applied Physics Letters 69(4), 1996, pp. 550–552, DOI:10.1063/1.117783.
  • [34] DAI X., XIANG Y., WEN S., HE H., Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb, Journal of Applied Physics109(5), 2011, article ID 053104, DOI:10.1063/1.3549834.
  • [35] MANOLATOU C., KHAN M.J., FAN S., VILLENEUVE P.R., HAUS H.A., JOANNOPOULOS J.D., Coupling of modes analysis of resonant channel add-drop filters, IEEE Journal of Quantum Electronics 35(9),1999, pp. 1322–1331, DOI:10.1109/3.784592.
  • [36] XIAO Y.-F., LI M., LIU Y.-C., LI Y., SUN X., GONG Q., Asymmetric Fano resonance analysis in indirectly coupled microresonators, Physical Review A 82(6), 2010, article ID 065804, DOI:10.1103/PhysRevA.82.065804.
  • [37] MIYAZAKI H.T., KUROKAWA Y., Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmoncavity, Physical Review Letters 96(9), 2006, article ID 097401, DOI:10.1103/PhysRevLett.96.097401.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2bac067-a833-4ddb-8ab7-8758d076b79d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.