PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tunable passively Q-switched ytterbium-doped fiber laser using MoWS₂/rGO nanocomposite saturable absorber

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We demonstrated a tunable Q-switched ytterbium-doped fiber laser (YDFL) using MWS₂/rGO nanocomposite as passive saturable absorber. Further, the Mo₁₋xWxS₂/rGO nanosheets, with x proportion of 0.2, are synthesized using hydrothermal exfoliation technique. The proposed nanocomposite-PVA based thin film is fabricated by mixing the MoWS₂/rGO nanosheets with polyvinyl alcohol (PVA). The fabricated thin film is sandwiched between two fiber ferrules to realize the proposed saturable absorber (SA). Further, the proposed MoWS₂/rGO-PVA based thin film SA exhibits a fast relaxation time and a high damage threshold which are suitable to realize a Q-switched pulsed laser with a tunable wavelength range of 10 nm that extends from 1028 nm to 1038 nm. For the highest pump power of 267.4 mW, the generated Q-switched pulses exhibit a narrow pulse width of 1.22 μs, the pulse repetition rate of 90.4 kHz, the highest pulse energy of 2.13 nJ and its corresponding average power of 0.193 mW. To the best of author’s knowledge, this is the first realization of a tunable Q-switching fiber laser in a 1 μm wavelength using MoWS₂/rGO nanocomposite saturable absorber.
Twórcy
autor
  • Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, TN, India
  • Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632 014, India
  • School of Electrical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
Bibliografia
  • [1] A. Hideur, T. Chartier, C.O. Zkul, F. Sanchez, All-fiber tunable ytterbium- dopeddouble-clad fiber ring laser, Opt. Lett. 26 (14) (2001) 1054–1056.
  • [2] H. Wu, J. Wu, Q. Yu, K. Zhang, H. Xiao, J. Leng, J. Xu, P. Zhou, Over 70nmbroadband-tunable yb-doped fiber pulse laser based on trilaminar graphene,Laser Phys. Lett. 14 (6) (2017), 065105.
  • [3] H. Ahmad, M.A.M. Salim, S.R. Azzuhri, M.R.K. Soltanian, S.W. Harun, Apassively q-switched ytterbium-doped fiber laser based on a few- layer bi2se3saturable absorber, Laser Phys. 25 (6) (2015), 065102.
  • [4] J. Mohanraj, V. Velmurugan, S. Sivabalan, Transition metal dichalco-genidesbased saturable absorbers for pulsed laser technology, Opt. Mater. 60(Supplement C) (2016) 601–617.
  • [5] N. Xu, W. Yang, H. Zhang, Nonlinear saturable absorption properties of indiumselenide and its application for demonstrating a Yb-doped mode-locked fiberlaser, Opt. Mater. Express 8 (2018) 3092–3103.
  • [6] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonac- corso, D.M.Basko, A.C. Ferrari, Graphene mode-locked ultrafast laser, ACS Nano 4 (2)(2010) 803–810.
  • [7] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183–191.
  • [8] Q. Bao, K.P. Loh, Graphene photonics, plasmonics, and broadbandoptoelectronic devices, ACS Nano 6 (5) (2012) 3677–3694.
  • [9] A. Martinez, Z. Sun, Nanotube and graphene saturable absorbers for fibrelasers, Nat. Photon. 7 (2013) 842–845.
  • [10] Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D.Tang, D. Fan, Mechanically exfoliated black phosphorus as new saturableabsorber for both q-switching and mode-locking laser operation, Opt. Express23 (10) (2015) 12823–12833.
  • [11] K. Wang, J. Wang, J. Fan, M. Lotya, A. ONeill, D. Fox, Y. Feng, X. Zhang, B. Jiang,Q. Zhao, H. Zhang, J.N. Coleman, L. Zhang, W.J. Blau, Ultra- fast saturableabsorption of two-dimensional mos2nanosheets, ACS Nano 7 (10) (2013)9260–9267.
  • [12] Z. Li, Y. Zhang, Ch. Cheng, H. Yu, F. Chen, 6.5 GHz Q-switched mode-lockedwaveguide lasers based on two-dimensional materials as saturable absorbers,Opt. Express 26 (2018) 11321–11330.
  • [13] K. Niu, Q. Chen, R. Sun, B. Man, H. Zhang, Passively Q-switched erbium-dopedfiber laser based on SnS2 saturable absorber, Opt. Mater. Express 7 (2017)3934–3943.
  • [14] K. Niu, R. Sun, Q. Chen, B. Man, H. Zhang, Passively mode-locked Er-dopedfiber laser based on SnS2 nanosheets as a saturable absorber, Photon. Res. 6(2018) 72–76.
  • [15] L. Ziqi, D. Ningning, Z. Yuxia, W. Jun, Y. Haohai, Ch. Feng, Invited article:mode-locked waveguide lasers modulated by rhenium diselenide as a newsaturable absorber, APL Photon. 3 (2018) 080805.
  • [16] L. Sun, Z. Lin, J. Peng, J. Weng, Y. Huang, Z. Luo, Preparation of few- layerbismuth selenide by liquid-phase-exfoliation and its optical absorptionproperties, Sci. Rep. 4 (2014) 4794.
  • [17] P. Tonndorf, R. Schmidt, P. Bottger, X. Zhang, J. Borner, A. Liebig, M. Albrecht,C. Kloc, O. Gordan, D.R.T. Zahn, S.M. de Vasconcellos, R. Bratschitsch,Photoluminescence emission and raman response of monolayer mos2, mose2,and wse2, Opt. Express 21 (4) (2013) 4908–4916.
  • [18] H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensionallayered transition metal dichalcogenide nanosheets, Nat. Chem. 5 (2013)263–275.
  • [19] X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W.J.Blau, J. Wang, Facile fabrication of wafer-scale mos2neat films with enhancedthird-order nonlinear optical performance, Nanoscale 7 (2015) 2978–2986.
  • [20] P.D. Tran, S.Y. Chiam, P.P. Boix, Y. Ren, S.S. Pramana, J. Fize, V. Artero, J. Barber,Novel cobalt/nickel-tungsten-sulfide catalysts for electro catalytic hydrogengeneration from water, Energy Environ. Sci. 6 (2013) 2452–2459.
  • [21] Y. Chen, J. Xi, D.O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y.-S.Huang, L. Xie, Tunable band gap photoluminescence from atomically thintransition-metal dichalcogenide alloys, ACS Nano 7 (5) (2013) 4610–4616.
  • [22] S.D. Karande, N. Kaushik, D.S. Narang, D. Late, S. Lodha, Thickness tunabletransport in alloyed wsse field effect transistors, Appl. Phys. Lett. 109 (14)(2016) 142101.
  • [23] V. Kiran, D. Mukherjee, R.N. Jenjeti, S. Sampath, Active guests in themos2/mose2host lattice: efficient hydrogen evolution using few-layer al- loysof mos2(1-x)se2x, Nanoscale 6 (2014) 12856–12863.
  • [24] L.M. Xie, Two-dimensional transition metal dichalcogenide alloys:preparation, characterization and applications, Nanoscale 7 (2015)18392–18401.
  • [25] H. Li, K. Yu, Z. Tang, Z. Zhu, Experimental and first-principles investigation ofmows2with high hydrogen evolution performance, ACS Appl. Mater.Interfaces 8 (43) (2016) 29442–29451.
  • [26] D. Chen, W. Chen, L. Ma, G. Ji, K. Chang, J.Y. Lee, Graphene-like layered metaldichalcogenide/graphene composites: synthesis and applications in energystorage and conversion, Mater. Today 17 (2014) 184–193.
  • [27] Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A.M. Asiri, X. Sun, Carbon nanotubesdecorated with cop nanocrystals: a highly active non-noble- metalnanohybrid electrocatalyst for hydrogen evolution, Angew. Chem. Int. Ed. 53(2014) 6710–6714.
  • [28] H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y.Xue, H. Zhang, Q. Bao, Graphene/bi2te3heterostructure as saturable absorberfor short pulse generation, ACS Photonics 2 (2015) 832–841.
  • [29] Z. Li, C. Cheng, N. Dong, C. Romero, Q. Lu, J. Wang, J.R.V. de Aldana, Y. Tan, F.Chen, Q-switching of waveguide lasers based on graphene/ws2van der waalsheterostructure, Photon. Res. 5 (2017) 406–410.
  • [30] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc.80 (1958) 1339.
  • [31] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Thin-film particles ofgraphite oxide 1:2: high-yield synthesis and flexibility of the particles, Carbon42 (2004) 2929–2937.
  • [32] F. Li, J. Li, Z. Cao, X. Lin, X. Li, Y. Fang, X. An, Y. Fu, J. Jin, R. Li, Mos2 quantumdot decorated rgo: a designed electrocatalyst with high active site density forthe hydrogen evolution reaction, J. Mater. Chem. A 3 (2015) 21772–21778.
  • [33] Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, 1-,1.5-, and 2- _m fiber lasers q-switched by a broadband few- layer mos2saturable absorber, J. Lightwave Technol. 32 (2014) 4679–4686.
  • [34] M. Zhang, R.C.T. Howe, R.I. Woodward, E.J.R. Kelleher, F. Tor- risi, G. Hu, S.V.Popov, J.R. Taylor, T. Hasan, Solution processed mos2-pva composite forsub-bandgap mode-locking of a wideband tunable ultrafast er:fiber laser, Nano Res. 8 (2015) 1522–1534.
  • [35] X. Wang, H. Feng, Y. Wu, L. Jiao, Controlled synthesis of highly crystalline mos2flakes by chemical vapor deposition, J. Am. Chem. Soc. 135 (2013) 5304–5307.
  • [36] H. Ahmad, M.A.M. Salim, K. Thambiratnam, S.F. Norizan, S. Harun, A blackphosphorus-based tunable Q-switched ytterbium fiber laser, Laser Phys. Lett.13 (2016), 095103.
  • [37] Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, 1-,1.5-, and 2 _m fiber lasers q-switched by a broadband few-layer mos2saturable absorber, J. Lightwave Technol. 32 (2014) 4077–4084.
  • [38] M. Zhang, G. Hu, R. Howe, L. Chen, Z. Zheng, T. Hasan, Yb-and er-doped fiberlaser q-switched with an optically uniform, broadband ws 2 saturableabsorber, Sci. Rep. 5 (2015), srep17482.
  • [39] L. Hou, J. Sun, H. Guo, Q. Lin, Y. Wang, Y. Bai, L. Baole, H. Chen, J. Bai,High-efficiency, high-energy ytterbium-doped Q-switched fibre laser withgraphene oxide-COOH saturable absorber, Laser Phys. Lett. 15 (2018), 075103.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2b7636a-d598-473d-8e23-cc3765540dde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.