Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In recent years, Poland has seen a rapid increase in installed capacity in the renewable energy sources (RES) sector. This increase mainly concerns weather-dependent sources such as PV and wind installations, whose intermittent operation destabilizes the Polish power system (PPS). The solution to fluctuations in PPS operating parameters are stable and controllable RES sources, among which demand-driven biogas plants (with an energy storage in the form of biogas) have a special development potential. The aim of this paper was to describe the construction and principles of operation of peak biogas plants and to analyze the possibilities of including them in the operation of PPS. The paper shows the fundamental differences between the operation of typical biogas plants (producing electricity and heat continuously) and demand-driven biogas plants, in which biogas production takes place continuously, while electricity production occurs periodically, during the highest demand for power during the day. It was found that demand-driven biogas plants are a promising alternative to the previously used coal-fired units, battery energy storage units and pumped-storage power plants and in the future they may act as a stabilizer of the National Power System, achieving available electrical power of up to 11.1 GW.
Czasopismo
Rocznik
Tom
Strony
236--248
Opis fizyczny
Bibliogr. 73 poz., rys., tab.
Twórcy
autor
- Department of Biosystems Engineering, Poznan University of Life Sciences, ul. Wojska Polskiego 50, 60-627 Poznań, Poland
- Dynamic Biogas Company, ul. Bóżnicza 12/4, 61-752 Poznań, Poland
autor
- Department of Biosystems Engineering, Poznan University of Life Sciences, ul. Wojska Polskiego 50, 60-627 Poznań, Poland
autor
- Department of Biosystems Engineering, Poznan University of Life Sciences, ul. Wojska Polskiego 50, 60-627 Poznań, Poland
autor
- Department of Biosystems Engineering, Poznan University of Life Sciences, ul. Wojska Polskiego 50, 60-627, Poznań, Poland
Bibliografia
- 1. Abanades, S., Abbaspour, H., Ahmadi, A., Das, B., Ehyaei, M.A., Esmaeilion, F., El Haj Assad, M., Hajilounezhad, T., D. H. Jamali, D.H., Hmida, A., H.A. Ozgoli, H.A., S. Safari, S., Al Shabi M.M., Bani-Hani E.H. 2022. A critical review of biogas production and usage with legislations framework across the globe. International Journal of Environmental Science and Technology, 19, 3377–3400. doi:10.1007/s13762-021-03301-6.
- 2. Bartnikowska, S., Olszewska, A., Czekała, W. 2017. The current state of connection issues of renewable energy sources installations to the electrical grid. Polityka Energetyczna – Energy Policy Journal, 20(2), 117–128.
- 3. Bayindir, R., Demirbaş, Ş., Irmak, E., Cetinkaya, U., Ova, A., Yeşil, M. 2016. Effects of renewable energy sources on the power system. IEEE International Power Electronics and Motion Control Conference (PEMC), Varna, Bulgaria, 388–393 doi: 10.1109/EPEPEMC.2016.7752029.
- 4. Bednarek, A., Klepacka, A.M., Siudek, A. 2023. Development barriers of agricultural biogas plants in Poland. Economics and Environment, 84(1), 229–258. doi: 10.34659/eis.2023.84.1.528.
- 5. Brauers, H., Oei, P.Y. 2020. The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels. Energy Policy, 144, 111621. doi: 10.1016/J.ENPOL.2020.111621.
- 6. Brodny, J., Tutak, M. 2022. Challenges of the polish coal mining industry on its way to innovative and sustainable development. Journal of Cleaner Production, 375, 134061. doi: 10.1016/J.JCLEPRO.2022.134061.
- 7. Ceran, B. 2018. A comparative analysis of energy storage technologies. Polityka Energetyczna – Energy Policy Journal, 21(3), 97–110. doi:10.24425/124498.
- 8. Ciuła, J., Wiewiórska, I., Banas, M., Pająk, T. 2023. Balance and Energy Use of Biogas in Poland: Prospects and Directions of Development for the Circular Economy. Energies, 16(9), 3910. doi:10.3390/en16093910.
- 9. Czekała, W., Pulka, J., Jasiński, T., Szewczyk, P., Bojarski, W., Jasiński, J. 2023. Waste as substrates for agricultural biogas plants: A case study from Poland. Journal of water and land development, 56(1–3), 45–50. doi: 10.24425/jwld.2023.143743.
- 10. Czekała, W., Łukomska, A., Pulka, J., Bojarski, W., Pochwatka, P., Kowalczyk-Juśko, A., Oniszczuk, A., Dach, J. 2023. Waste-to-energy: Biogas potential of waste from coffee production and consumption. Energy, 276, 127604. doi: 10.1016/J.ENERGY.2023.127604.
- 11. Dach, J. 2016. Energetic and economic efficiency of agricultural biogas plant working with different substrates. Journal of Research and Applications in Agricultural Engineering, 61(3), 72—76.
- 12. Dobrzycki, A., Roman, J. 2022. Correlation between the Production of Electricity by Offshore Wind Farms and the Demand for Electricity in Polish Conditions. Energies, 15(10), 3669. doi:10.3390/EN15103669.
- 13. Dołęga, W. 2018. National grid electrical power infrastructure – threats and challenges. Polityka Energetyczna – Energy Policy Journal, 21(2), 89–103.doi: 10.24425/122769.
- 14. Dotzauer, M., Pfeiffer, D., Lauer, M., Pohl, M., Mauky, E., Bär, K., Sonnleitner, M., Zörner, W., Hudde, J., Schwarz, B., Faßauer, B., Dahmen, M., Rieke, C., Herbert, J., Thrän, D. 2019. How to measure flexibility – Performance indicators for demand driven power generation from biogas plants. Renewable Energy, 134, 135–146. doi: 10.1016/J.RENENE.2018.10.021.
- 15. Dzierża, L. 2017. Czy LCOE jest dobrą miarą rentowności inwestycji w energetyce? (in Polish) Is LCOE a Good Measure of Investment Decision in Energy Industry? Finanse, Rynki Finansowe, Ubezpieczenia, 89(2), 273–284. doi: 10.18276/frfu.2017.89/2-20.
- 16. EBA. 2023. European Biogas Association, Activity report. Available online: https://www.europeanbiogas.eu/wp-content/uploads/2024/01/EBA-ACTIVITY-REPORT-2023.pdf (accessed on 23 April 2024).
- 17. Energy Market Agency. 2022. Sytuacja w eko-energetyce (in Polish). Bulletin of power industry. Available online: https://www.are.waw.pl/oferta/wydawnictwa#sytuacja-w-elektroenergetyce (accessed on 12 August 2024).
- 18. Energy Transition. 2023. When Germany Can’t Give it Away: Negative-Price Power Hours. Available online: https://energytransition.org/2023/03/when-germany-cant-give-it-away-negative-price-power-hours/ (accessed on 22 June 2024).
- 19. Erdiwansyah, E., Taleb, M.A., Husin, H., Syafie, N., Zaki, M., Muhibbuddin. 2021. A critical review of the integration of renewable energy sources with various technologies. Protection and Control of Modern Power Systems, 6(1), 3. doi: 10.1186/s41601-021-00181-3.
- 20. Ferdeș, M., Zăbavă, B.S., Paraschiv, G., Ionescu, M., Dincă, M.N., Moiceanu, G. 2022. Food Waste Management for Biogas Production in the Context of Sustainable Development. Energies, 15(17), 6268. doi:10.3390/EN15176268.
- 21. Forum Energii. 2023. Transformacja energetyczna w Polsce (in Polish). Available online: https://www.forum-energii.eu/transformacja-energetyczna-w-polsce-edycja-2023 (accessed on 22 April 2024).
- 22. Gadirli, G., Pilarska, A.A., Dach, J., Pilarski, K., Kolasa-Więcek, A., Borowiak, K. 2024. Fundamentals, Operation and Global Prospects for the Development of Biogas Plants – A Review. Energies, 17. doi: 10.3390/en15218275.
- 23. Gajdzik, B., Jaciow, M., Wolniak, R., Wolny, R., Grebski, W. 2023. Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data. Resources, 12(9), 111. doi: 10.3390/RESOURCES12090111.
- 24. Hahn, H., Krautkremer, B., Hartmann, K., Michael, W. 2014. Review of concepts for a demand-driven biogas supply for flexible power generation. Renewable and Sustainable Energy Reviews, 29, 383–393. doi: 10.1016/j.rser.2013.08.085.
- 25. Idel, R. 2022. Levelized full system costs of electricity. Energy, 259, 12490. doi: 10.1016/j.energy.2022.124905.
- 26. IEA Bioenergy. 2020. Integration of biogas systems into the energy system – Technical aspects of flexible plant operation. Available online: https://task37.ieabioenergy.com/wp-content/uploads/sites/32/2022/02/Flex_report_END_WEB.pdf (accessed on 20 May 2024).
- 27. Igliński, B., Piechota, G., Iwański, P., Skarzatek, M., Pilarski, G. 2020. 15 Years of the Polish agricultural biogas plants: their history, current status, biogas potential and perspectives. Clean Technologies and Environmental Policy, 22, 281–307. doi: 10.1007/s10098-020-01812-3.
- 28. Igliński, B., Buczkowski, R., Cichosz, M. 2015. Biogas production in Poland - Current state, potential and perspectives. Renewable and Sustainable Energy Review, 50, 686–695. doi: 10.1016/j.rser.2015.05.013.
- 29. Ignatowicz, K., Filipczak, G., Dybek, B., Wałowski, G. 2023. Biogas production depending on the substrate used: a review and evaluation study – European examples. Energies, 16, 798. doi: 10.3390/en16020798.
- 30. Institute for Renewable Energy. 2024. Photovoltaics market in Poland 2024. Available online: https://ieo.pl/en/86-en/news/1692-summary-photovoltaic-market-in-poland-2024 (accessed on 26 August 2024)
- 32. Institute for Renewable Energy. 2024. Operating Power Plants and Wind Farms in Poland, Available online: https://ieo.pl/aktualnosci/1676-energetyka-wiatrowa-w-polsce-marzec-2024-rekordowe-przyrosty-mocy-wiatrowych-w-latach-2022-2023 (accessed on 26 August 2024).
- 33. Kabel, T.S., Bassim, M. 2020. Reasons for Shifting and Barriers to Renewable Energy: A Literature Review. International Journal of Energy Economics and Policy, 10(2), 89–94. doi: 0.32479/ijeep.8710.
- 34. Kabeyi, M.J.B., Oludolap, A.O. 2023. The levelized cost of energy and modifications for use in electricity generation planning. Energy Reports, 9(9), 495–534. doi: 10.1016/j.egyr.2023.06.036.
- 35. Kałuża, T., Hämmerling, M., Zawadzki, P., Czekała, W., Kasperek, R., Sojka, M., Mokwa, M., Ptak, M., Szkudlarek, A., Czechlowski, M., Dach, J. 2022. The hydropower sector in Poland: Barriers and the outlook for the future. Renewable and Sustainable Energy Reviews, 163, 112500. doi: 10.1016/J.RSER.2022.112500.
- 36. Kataray, T., Nitesh, B., Yarram,B., Sinha, S., Cuce, E., Shaik, S., Vigneshwaran, P., Roy, A. 2023. Integration of smart grid with renewable energy sources: Opportunities and challenges – A comprehensive review. Sustainable Energy Technologies and Assessments, 58, 103363. doi: 10.1016/j.seta.2023.103363.
- 37. Komorowska, A., Gawlik, L. 2018. Management of surplus electricity production from unstable renewable energy sources using Power to Gas technology. Polityka Energetyczna – Energy Policy Journal, 21(4), 43–64. doi: 10.24425/124511.
- 38. KOWR. 2024. The National Support Centre for Agriculture (in Polish). Available online: https://www.gov.pl/web/kowr/rejestr-wytworcow-biogazu-rolniczego (accessed on 25 May 2024).
- 39. Kryszk, H., Kurowska, K., Marks-Bielska, R., Bielski, S., Eźlakowski, B. 2023. Barriers and Prospects for the Development of Renewable Energy Sources in Poland during the Energy Crisis. Energies, 16, 1724. doi: 10.3390/en16041724.
- 40. Lafratta, M., Thorpe, R.B., Ouki, S.K., Shana, A., Germain, E., Willcocks, M., Lee, J. 2020. Dynamic biogas production from anaerobic digestion of sewage sludge for on-demand electricity generation. Bioresource Technology, 310, 123415. doi: 10.1016/J.BIORTECH.2020.123415.
- 41. Lafratta, M., Thorpe, R.B., Ouki, S.K., Shana, A., Germain, E., Willcocks, M., Lee, J. 2021. Demand-driven biogas production from anaerobic digestion of sewage sludge: Application in demonstration scale. Waste and Biomass Valorization, 12(12), 6767–6780. doi: 10.1007/s12649-021-01452-8.
- 42. Lehtola, T., Zahedi, A. 2020. Technical challenges in the application of renewable energy: A review. International Journal of Smart Grid and Clean Energy, 9, 689–699. doi: 10.12720/sgce.9.3.689-699.
- 43. Maradin, D. 2021. Advantages and disadvantages of renewable energy sources utilization. International Journal of Energy Economics and Policy, 11, 176–183. doi: 10.32479/ijeep.11027.
- 44. Marks, S., Dach, J., Morales, F.J.F., Mazurkiewicz, J., Pochwatka, P., Gierz, Ł. 2020. New trends in substrates and biogas systems in Poland. Journal of Ecological Engineering, 21(4), 19–25. doi:10.12911/22998993/119528.
- 45. Mauky, E., Fabian J.H., Liebetrau, J., Nelles, M. 2015. Flexible biogas production for demand-driven energy supply – feeding strategies and types of substrates. Bioresource Technology, 178, 262–269. doi:10.1016/j.biortech.2014.08.123.
- 46. Mauky, E., Weinrich, S., Jacobi, H.F., Nägele, H.J., Liebetrau, J., Nelles M. 2017. Demand-driven biogas production by flexible feeding in full-scale – process stability and flexibility potentials. Anaerobe, 46, 86–95. doi: 10.1016/j.anaerobe.2017.03.010.
- 47. Mondal, A.H., Kamp, L.M., Pachova, N.I. 2010. Drivers, barriers, and strategies for implementation of renewable energy technologies in rural areas in Bangladesh – an innovation system analysis. Energy Policy, 38, 4626–4634. doi: 10.1016/j.enpol.2010.04.018.
- 48. Mrozowska, S., Wendt, J.A., Tomaszewski, K., Ulgiati, S., Casazza, M., Lomas, P.L. 2021. The challenges of Poland’s energy transition. Energies 14(23), 8165. doi: 10.3390/EN14238165.
- 49. Muscat, A., De Olde, E., Boer, I.J.M. Ripoll-Bosch, R. 2019. The battle for biomass: A systematic review of food-feed-fuel competition. Global Food Security, 25, 100330. doi: 10.1016/j.gfs.2019.100330.
- 50. Nedic, D.P, Dobson, I., Kirschen, D.S, Carreras, B.A., Vickie E. Lynch, V.E. 2006. Criticality in a cascading failure blackout model. International Journal of Electrical Power & Energy Systems, 28(9), 627–633. doi: 10.1016/j.ijepes.2006.03.006.
- 51. Nevzorova, T., Kutcherov, V. 2019. Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strategy Reviews, 26, 100414. doi:10.1016/j.esr.2019.100414.
- 52. Nissen, U., Harfst, N. 2019. Shortcomings of the traditional “levelized cost of energy” [LCOE] for the determination of grid parity. Energy, 171, 1009-1016. doi: 10.1016/j.energy.2019.01.093.
- 53. Pavičić, J., Novak, M.K., Brkić, V., Simon, K. 2022. Biogas and biomethane production and usage: technology development, advantages and challenges in Europe. Energies, 15(8), 2940. doi: 10.3390/en15082940.
- 54. Peters, L., Biernacki, P., Uhlenhut, F., Steinigeweg, S. 2018. Modelling of demand driven biogas plants to cover residual load rises. Proceedings, 2, 1385. doi: 10.3390/proceedings2221385.
- 55. Piechota, J., Igliński, B. 2021. Biomethane in Poland—Current status, potential, perspective and development. Energies, 14(6), 1517. doi: 10.3390/en14061517.
- 56. Pietrzak, M.B., Igliński, B., Kujawski, W., Iwański, P. 2021. Energy transition in Poland—Assessment of the renewable energy sector. Energies, 14, 2046. doi: 10.3390/en14082046.
- 57. Pochwatka, P., Kowalczyk-Jusko, A., Mazur, A., Janczak, D., Pulka, J., Dach, J., Mazurkiewicz, J. 2020a. Energetic and economic aspects of biogas plants feed with agriculture biomass. Proceedings of 2020 4 th International Conference on Green Energy and Applications, ICGEA 2020, 130–133. doi:10.1109/ICGEA49367.2020.239705.
- 58. Pochwatka, P., Kowalczyk-Juśko, A., Sołowiej, P.,Wawrzyniak, A., Dach, J. 2020b. Biogas plant exploitation in a middle-sized dairy farm in Poland: Energetic and economic aspects. Energies, 13, 6058. doi: 10.3390/en13226058.
- 59. Pochwatka, P., Rozakis, S., Kowalczyk-Juśko, A., Czekała, W., Qiao, W., Nägele, H.-J., Janczak, D., Mazurkiewicz, J., Mazur, A., Dach, J. 2023. The energetic and economic analysis of demand driven biogas plant investment possibility in dairy farm. Energy, 283, 129165. doi: 10.1016/J.ENERGY.2023.129165.
- 60. PPS. 2024. Zapotrzebowanie KSE (in Polish).Available online: https://www.pse.pl/obszary-dzialalnosci/krajowy-system-elektroenergetyczny/zapotrzebowanie-kse (accessed on 12 August 2024).
- 61. Przygodzka, R., Badora, A., Krukowski, K., Kud, K., Mioduszewski, J., Woźniak, M. 2023. Odnawialne źródła energii w rolnictwie Polski wschodniej – uwarunkowania rozwoju (in Polish) Renewable energy sources in agriculture in Eastern Poland - development conditions. Fundacja Ekonomistów Środowiska i Zasobów Naturalnych, 81–89. Available online: https://repozytorium.uwb.edu.pl/jspui/bitstream/11320/15407/1/Odnawialne_zrodla_en-ergii.pdf (accessed on 22 April 2024).
- 62. Rieke, C., Stollenwerk, D., Dahmen, M., Pieper, M. 2018. Modeling and optimization of a biogas plant for a demand-driven energy supply. Energy, 145, 657–664. doi: 10.1016/J.ENERGY.2017.12.073.
- 63. Rozakis, S., Bartoli, A., Dach, J., Jędrejek, A., Kowalczyk-Juśko, A., Mamica, Ł., Pochwatka, P., Pudelko, R., Shu, K. 2021. Policy impact on regional biogas using a modular modeling tool. Energies, 14(13), 3738. doi: 10.3390/EN14133738.
- 64. Shakoor, R., Hameed, S., Raheem, A., Rashid, M., Arfeen, Z. 2022. Performance analysis of biogas net metering with the grid-connected station. International Journal of Ambient Energy, 44, 1–24. doi:10.1080/01430750.2022.2155246.
- 65. Silva, I., Lapa, N., Ribeiro, H., Duarte, E. 2024. Bioreactor feeding strategies to improve biogas production and pig slurry management flexibility. Journal of Ecological Engineering, 25(9), 252–259. doi: 10.12911/22998993/190924.
- 66. Sowa, S. 2019. The capacity market and its impact on the development of distributed energy sources. Polityka Energetyczna – Energy Policy Journal, 22(4), 65–80.
- 67. Syahri, S.N.K.M., Hasan, H. A., Abdullah, S.R.S., Othman, A.R., Abdul, P.M., Azmy, R.F.H.R., Muhamad, M.H. 2022. Recent challenges of biogas production and its conversion to electrical energy. Journal of Ecological Engineering, 23(3), 251–269. doi: 10.12911/22998993/146132.
- 68. Szczerbowski, R., Kornobis, D. 2019. The proposal of an energy mix in the context of changes in Poland’s energy policy. Polityka Energetyczna – Energy Policy Journal, 22(3), 5–18. doi: 10.33223/EPJ/111757.
- 69. Taylor, T.M. 2018. Energy storage. The European Physical Journal Web of Conferences. 2018, 189, 0009. doi: 10.1051/epjconf/201818900009.
- 70. Tumusiime, E., Kirabira, J.B., Musinguzi, W.B. 2022. Optimization of substrate mixing ratios for wet anaerobic digestion of selected organic waste streams for productive biogas systems. Energy Reports, 8, 10409–10417. doi: 10.1016/J.EGYR.2022.08.189.
- 71. URE. 2023, Energy regulatory office, national reports. Available online: https://www.ure.gov.pl/en/about-us/reports/67,Reports.html (accessed on 27May 2024).
- 72. URE. 2024, Energy Regulatory Office. Report on the activities of the president of the energy regulatory office (in Polish). Available online: https://bip.ure.gov.pl/bip/o-urzedzie/zadania-prezesa-ure/sprawozdania/800,Sprawozdania.html (accessed on 22 May 2024).
- 73. Wang, D., Liu, N., Chen, F., Wang, Y., Mao, J. 2024. Progress and prospects of energy storage technology research: Based on multidimensional comparison. Journal of Energy Storage, 75, 109710. doi:10.1016/j.est.2023.109710.
Uwagi
W bibliografii brak pozycji 31.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2af793a-72ee-494e-b2e0-b08f1d9b083d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.