PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Long-term effect of different particle size distributions of waste glass powder on the mechanical properties of concrete

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a comprehensive experimental investigation was conducted into the effect of the particle size distributions (PSDs) and percentages of waste powdered glass as a partial replacement of cement on the long-term mechanical behavior of concrete produced at two different cement levels. For this purpose, two different mixtures of concrete were used as reference mixtures; the first has a relatively low cement content (331 kg/m3), and the second has a relatively high cement content (490 kg/m3). Two different PSDs of glass powder (GP) labeled GP-A and GP-B ((55 μm<GP-A < 135 μm) and (55 μm>GP-B) were used, and the considered GP content for the low cement content mixture (LCCM) and the high cement content mixture (HCCM) were (0%, 5%, and 10%) and (0%, 5%, 10%, and 15%) by weight of cement, respectively. The mechanical performance of all concrete mixtures at 180 days was investigated and evaluated in related tests as compressive strength and toughness, splitting and flexural tensile strength, elastic modulus, and compressive stress-strain behavior. The experimental results generally indicated that the compressive strength of GP-modified concrete improved significantly over the long-term age (180-days) compared to the early age (28-days). The contribution of PSDs of GP to enhancing the mechanical properties of concrete is insignificant compared to its replacement amount. Finally, independent of the PSDs, the incorporation of 10% GP for LCCM and 15% of GP for HCCM has a positive effect on the long-term mechanical properties of concrete, indicating that GP can be used as a replacement for cement.
Rocznik
Strony
61--75
Opis fizyczny
Bibliogr. 54 poz.
Twórcy
autor
  • PhD student; College of Engineering, Department of Civil Engineering, University of Sulaimani, Sulaymaniyah, 46001, Kurdistan Region of Iraq
autor
  • Professor; College of Engineering, Department of Civil Engineering, University of Sulaimani, Sulaymaniyah, 46001, Kurdistan Region of Iraq
Bibliografia
  • [1] Schneider, M. (2019). The cement industry on the way to a low-carbon future. Cement and Concrete Research, 124, 105792. https://doi.org/10.1016/j.cemconres.2019.105792
  • [2] Sonebi, M., Ammar, Y., & Diederich, P. (2016). Sustainability of cement, concrete and cement replacement materials in construction. Elsevier, In Sustainability of Construction Materials, 371-396. https://doi.org/10.1016/B978-0-08-100370-1.00015-9
  • [3] Federico, L. (2013). Waste glass - a supplementary cementitious material (Doctoral dissertation). McMaster University, Hamilton, Ontario, Canada. http://hdl.handle.net/11375/13455
  • [4] Omran, A., & Tagnit-hamou, A. (2016). Performance of glass-powder concrete in field applications. Construction and Building Materials, 109, 84-95. https://doi.org/10.1016/j.conbuildmat.2016.02.006
  • [5] Islam, G. M. S., Rahman, M. H., & Kazi, N. (2017). Waste glass powder as partial replacement of cement for sustainable concrete practice. International Journal of Sustainable Built Environment, 6(1), 37-44. https://doi.org/10.1016/j.ijsbe.2016.10.005
  • [6] Shao, Y., Lefort, T., Moras, S., & Rodriguez, D. (2000). Studies on concrete containing ground waste glass. Cement and Concrete Research, 30(1), 91-100. https://doi.org/10.1016/S0008-8846(99)00213-6
  • [7] Idir, R., Cyr, M., & Tagnit-Hamou, A. (2010). Use of waste glass in cement-based materials. Déchets Sciences et Techniques, 9. https://doi.org/10.4267/dechets-sciences-techniques. 3132
  • [8] Aladdine, F., Laldji, S., & Tagnit-Hamou, A. (2009). Glass powder as an alternative cementitious material in concrete. In 10th ACI Int. Conf. Recent Advances in Concrete Tech. and Sustainability Issues, Seville, Espagne, 683-698.
  • [9] Matos, A. M., & Sousa-Coutinho, J. (2012). Durability of mortar using waste glass powder as cement replacement. Construction and Building Materials, 36, 205-215. https://doi.org/10.1016/j.conbuildmat.2012.04.027
  • [10] Dyer, T. D., & Dhir, R. K. (2001). Chemical reactions of glass cullet used as cement component. Journal of Materials in Civil Engineering, 13(6), 412-417. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(412)
  • [11] Kalakada, Z., & Doh, J. H. (2020). Studies on Recycled Waste Glass Powder as Binder in Concrete. In ACMSM25, 61-70. Springer. https://doi.org/10.1007/978-981-13-7603-0_7
  • [12] Aliabdo, A. A., Abd Elmoaty, A. E. M., & Aboshama, A. Y. (2016). Utilization of waste glass powder in the production of cement and concrete. Construction and Building Materials, 124, 866-877. https://doi.org/10.1016/j.conbuildmat.2016.08.016
  • [13] Naaamandadin, N. A., Abdul Aziz, I. S., Mustafa, W. A., & Santiagoo, R. (2020). Mechanical Properties of the Utilisation Glass Powder as Partial Replacement of Cement in Concrete. In Z. Jamaludin & M. N. Ali Mokhtar (Eds.), Intelligent Manufacturing and Mechatronics, 221-229. Singapore: Springer Singapore.
  • [14] Schwarz, N., Cam, H., & Neithalath, N. (2008). Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash. Cement and Concrete Composites, 30, 486-496. https://doi.org/10.1016/j.cemconcomp.2008.02.001
  • [15] Omran, A., Harbec, D., Tagnit-Hamou, A., & Gagne, R. (2017). Production of roller-compacted concrete using glass powder: Field study. Construction and Building Materials, 133, 450-458. https://doi.org/10.1016/j.conbuildmat.2016.12.099
  • [16] Shayan, A., & Xu, A. (2006). Performance of glass powder as a pozzolanic material in concrete: A field trial on concrete slabs. Cement and Concrete Research, 36(3), 457-468. https://doi.org/10.1016/j.cemconres.2005.12.012
  • [17] Karamberi, A., & Moutsatsou, A. (2005). Participation of coloured glass cullet in cementitious materials. Cement and Concrete Composites, 27(2), 319-327. https://doi.org/10.1016/j.cemconcomp.2004.02.021
  • [18] Schwarz, N., & Neithalath, N. (2007). Quantifying the cementing efficiency of fine glass powder and its comparison to fly ash. In A. M. Amde, G. M. Sabnis, & J. S. Y. Tan (Eds.), Proceedings of the 1st International Conference on Recent Advances in Concrete Technology, RAC 2007, 735-746. DEStech Publications Inc.
  • [19] Chen, C. H., Huang, R., Wu, J. K., & Yang, C. C. (2006). Waste E-glass particles used in cementitious mixtures. Cement and Concrete Research, 36(3), 449-456. https://doi.org/10.1016/j.cemconres.2005.12.010
  • [20] Khmiri, A., Chaabouni, M., & Samet, B. (2013). Chemical behaviour of ground waste glass when used as partial cement replacement in mortars. Construction and Building Materials, 44, 74-80. https://doi.org/10.1016/j.conbuildmat.2013.02.040
  • [21] Zheng, K. (2016). Pozzolanic reaction of glass powder and its role in controlling alkali-silica reaction. Cement and Concrete Composites, 67, 30-38. https://doi.org/10.1016/j.cemconcomp.2015.12.008
  • [22] Nassar, R.-U.-D., & Soroushian, P. (2012). Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement. Construction and Building Materials, 29, 368-377. https://doi.org/10.1016/j.conbuildmat.2011.10.061
  • [23] He, Z., Zhan, P., Du, S., Liu, B., & Yuan, W. (2019). Creep behavior of concrete containing glass powder. Composites Part B: Engineering, 166, 13-20. https://doi.org/10.1016/j.compositesb.2018.11.133
  • [24] Jiang, Y., Ling, T.-C., Mo, K. H., & Shi, C. (2019). A critical review of waste glass powder - Multiple roles of utilization in cement-based materials and construction products. Journal of Environmental Management, 242, 440-449. https://doi.org/10.1016/j.jenvman.2019.04.098
  • [25] Kumarappan, N. (2013). Partial replacement cement in concrete using waste glass. International Journal of Engineering Research and Technology, 2(10), 1880-1883.
  • [26] Khatib, J. M., Negim, E. M., Sohl, H. S., & Chileshe, N. (2012). Glass Powder Utilisation in Concrete Production. European Journal of Applied Sciences, 4(4), 173-176. DOI: 10.5829/idosi.ejas.2012.4.4.1102
  • [27] Vandhiyan, R., Ramkumar, K., & Ramya, R. (2013). Experimental study on replacement of cement by glass powder. Int. J. Eng. Res. Technol, 2(5), 234-238.
  • [28] Elaqra, H. A., Al-Afghany, M. J., Abo-Hasseira, A. B., Elmasry, I. H., Tabasi, A. M., & Alwan, M. D. (2019). Effect of immersion time of glass powder on mechanical properties of concrete contained glass powder as cement replacement. Construction and Building Materials, 206, 674-682. https://doi.org/10.1016/j.conbuildmat.2019.02.110
  • [29] Naaamandadin, N. A., Abdul Aziz, I. S., Mustafa, W. A., & Santiagoo, R. (2020). Mechanical Properties of the Utilisation Glass Powder as Partial Replacement of Cement in Concrete. In Z. Jamaludin & M. N. Ali Mokhtar (Eds.), Intelligent Manufacturing and Mechatronics, 221-229. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-9539-0_23
  • [30] Omran, A. F., D.-Morin, E., Harbec, D., & Tagnit- Hamou, A. (2017). Long-term performance of glasspowder concrete in large-scale field applications. Construction and Building Materials, 135, 43-58. https://doi.org/10.1016/j.conbuildmat.2016.12.218
  • [31] Nassar, R. U. D., & Soroushian, P. (2011). Field investigation of concrete incorporating milled waste glass. The Journal of Solid Waste Technology and Management, 37(4), 307-319. https://doi.org/10.5276/JSWTM.2011.307
  • [32] ASTM C618-15, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI: 10.1520/C0618-15
  • [33] ASTM C136 / C136M-14, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA, 2014, www.astm.org. DOI: 10.1520/C0136_C0136M-14.
  • [34] ASTM C33 / C33M-13, Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA, 2013, www.astm.org. DOI: 10.1520/C0033_C0033M-13.
  • [35] ASTM C192 / C192M-15, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI: 10.1520/C0192_C0192M-15.
  • [36] ASTM C469 / C469M-14, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, 2014, www.astm.org. DOI: 10.1520/C0469_C0469M-14
  • [37] ASTM C39 / C39M-15a, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI:10.1520/C0039_C0039M-15A
  • [38] ASTM C496 / C496M-11, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2004, www.astm.org. DOI:10.1520/C0496_C0496M-11
  • [39] ASTM C78 / C78M-15a, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI:10.1520/C0078_C0078M-15A
  • [40] Noaman, A. T., Bakar, B. H. A., & Akil, H. M. (2016). Experimental investigation on compression toughness of rubberized steel fibre concrete. Construction and Building Materials, 115, 163-170. https://doi.org/10.1016/j.conbuildmat.2016.04.022
  • [41] Poon, C. S., Shui, Z. H., & Lam, L. (2004). Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cement and Concrete Research, 34(12), 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011
  • [42] Van Gysel, A., & Taerwe, L. (1996). Analytical formulation of the complete stress-strain curve for high strength concrete. Materials and Structures, 29(9), 529-533. https://doi.org/10.1007/BF02485952
  • [43] Omran, A., Soliman, N., Zidol, A., & Tagnit-Hamou, A. (2018). Performance of ground-glass pozzolan as a cementitious material - a review. Advances in Civil Engineering Materials, 7(1), 237-270. https://doi.org/10.1520/ACEM20170125
  • [44] Schwarz, N., DuBois, M., & Neithalath, N. (2007). Electrical conductivity based characterization of plain and coarse glass powder modified cement pastes. Cement and Concrete Composites, 29(9), 656-666. https://doi.org/10.1016/j.cemconcomp.2007.05.005
  • [45] Kamali, M., & Ghahremaninezhad, A. (2016). An investigation into the hydration and microstructure of cement pastes modified with glass powders. Construction and Building Materials, 112, 915-924. https://doi.org/10.1016/j.conbuildmat.2016.02.085
  • [46] ASTM C143 / C143M-15a, Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI: 10.1520/C0143_C0143M-15A
  • [47] Omer, B., & Saeed, J. (2020). Characterizations and Modeling the Influence of Particle Size Distributions (PSD) of Glass Powder on the Mechanical Behavior of Normal Strength Concrete. Civil Engineering and Architecture, 8(5), 993-1005. DOI: 10.13189/cea.2020.080526
  • [48] Shayan, A., & Xu, A. (2004). Value-added utilisation of waste glass in concrete. Cement and Concrete Research, 34(1), 81-89. https://doi.org/10.1016/S0008-8846(03)00251-5
  • [49] Rashad, A. M. (2014). Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement. Construction and Building Materials, 72, 340-357.
  • [50] Johnston, C. (1974). Waste Glass as Coarse Aggregate for Concrete. Journal of Testing and Evaluation, 2(5), 344-350. Retrieved from https://doi.org/10.1520/JTE10117J
  • [51] Kozlova, S., Millrath, K., Meyer, C., & Shimanovich, S. (2004). A suggested screening test for ASR in cement-bound composites containing glass aggregate based on autoclaving. Cement and Concrete Composites, 26(7), 827-835. https://doi.org/10.1016/j.cemconcomp.2003.03.001
  • [52] Jin W. (1998). Alkali-silica reaction in concrete with glass aggregate. A Chemo physicmechanical Approach, PhD Dissertation, Columbia University, (1998).
  • [53] Fernandes, I., & Broekmans, M. A. (2013). Alkali-silica reactions: an overview. Part I. Metallography, Microstructure, and Analysis, 2(4), 257-267. https://doi.org/10.1007/s13632-013-0085-5
  • [54] Specification, Iraqi Standard, (1984). No. 5/1984, Portland Cement. Central Organization for Standardization & Quality Control (COSQC), Baghdad, Iraq, 1984.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2ad7627-0275-4e04-a3c0-8b07b4a520e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.