Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The influence of nano dispersion on the thermoelectric properties of Bi2Te3 was actively investigating to wide-spread thermoelectric applications. Herein this report, we have systematically controlled the microstructure of Bi0.5Sb1.5Te3 (BST) alloys through the incorporation of carbon nanofiber (CNF), and studied their effect on thermoelectric properties, and mechanical properties. The BST/x-CNF (x-0, 0.05, 0.1, 0.2 wt.%) composites powder was fabricated using high energy ball milling, and subsequently consolidated the powder using spark plasma sintering. The identification of CNF in bulk composites was analyzed in Raman spectroscopy and corresponding CNF peaks were recognized. The BST matrix grain size was greatly reduced with CNF dispersion and consistently decreased along CNF percentage. The electrical conductivity was reduced and Seebeck coefficient varied in small-scale by embedding CNF. The thermal conductivity was progressively diminished, obtained lattice thermal conductivity was lowest compared to bare sample due to induced phonon scattering at interfaces of secondary phases as well as highly dense fine grain boundaries. The peak ZT of 0.95 achieved for 0.1 wt.% dispersed BST/CNF composites. The Vickers hardness value of 101.8 Hv was obtained for the BST/CNF composites.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
803--808
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
- Kongju National University, Division of Advanced Materials Engineering & Institute for Rare Metals, Cheonan, 331-717, Republic of Korea
autor
- Kongju National University, Division of Advanced Materials Engineering & Institute for Rare Metals, Cheonan, 331-717, Republic of Korea
autor
- Chungnam National University, Department of Materials Science & Engineering, Daejeon, 34134, Republic of Korea
autor
- Chungnam National University, Department of Materials Science & Engineering, Daejeon, 34134, Republic of Korea
autor
- Kongju National University, Division of Advanced Materials Engineering & Institute for Rare Metals, Cheonan, 331-717, Republic of Korea
autor
- Kongju National University, Division of Advanced Materials Engineering & Institute for Rare Metals, Cheonan, 331-717, Republic of Korea
Bibliografia
- [1] J. R. Szczech, J. M. Higgins, S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials, J. Mater. Chem. 21 (12), 4037-4055 (2011).
- [2] Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, G. J. Synder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature 473, 66-69 (2011).
- [3] R. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xoe, W. Liu, Y. Yan, C. Wolverton, C. Uher, M. G. Kanatzidis, X. Tang, High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe, Energy Environ. Sci. 11, 1520-1535 (2018).
- [4] H. Mamur, M. R. A Bhuiyan, F. Korkmaz, M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications, Renew. Sust. Energ. Rev. 82, 4159-4169 (2018).
- [5] I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, R. Venkatasubramanian, On-chip cooling by superlattice-based thin-film thermoelectrics, Nat. Nanotechnol. 4 (4), 235-238 (2009).
- [6] Z. Xiao, X. Zhu, On-Chip Sensing of Thermoelectric Thin Film’s Merit, Sensors 15 (7), 17232-17240 (2015).
- [7] X. Hu, X. Fan, B. Feng, D. Kong, P. Liu, R. Li, Y. Zhang, G. Li, Y. Li, Microstructural refinement, and performance improvement of cast n-type Bi2Te2.79Se0.21 ingot by equal channel angular extrusion, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00699-5
- [8] M. Sabarinathan, M. Omprakash, S. Harish, M. Navaneethan, J. Archana, S. Ponnusamy, Y. Hayakawa, Enhancement of power factor by energy filtering effect in hierarchical BiSbTe3 nanostructures for thermoelectric applications, Appl. Surf. Sci. 418, 246-251 (2017).
- [9] B. Madavali, H. S. Kim, K. H. Lee, S. J. Hong, Enhanced Seebeck coefficient by energy filtering in Bi-Sb-Te based composites with dispersed Y2O3 nanoparticles, Intermetallics 82, 68-75 (2017).
- [10] J. Hu, B. Liu, H. Subramanyan, B. Li, J. Zhou, J. Liu, Enhanced thermoelectric properties through minority carriers blocking in nanocomposites, J. Appl. Phys. 126 (9), 095107 (2019).
- [11] S. Foster, N. Neophytou, Effectiveness of nano inclusions for reducing bipolar effects in thermoelectric materials, Comput. Mater. Sci. 164, 91-98 (2019).
- [12] L. D. Hicks, T. C. Harman, X. Sun, M. S. Dresselhaus, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 53 (16), R10493-R10496 (1996).
- [13] I. V. Zaporotskova, N. P. Boroznina, Y. N. Parkhomenko, L. V. Kozhitov, Carbon nanotubes: Sensor properties, A review, Mod. Electron. Mater. 2 (4), 95-105 (2016).
- [14] P. A. Tran, L. Zhang, T. J. Webster, Carbon nanofibers and carbon nanotubes in regenerative medicine, Adv. Drug Deliv. Rev. 61 (12), 1097-1114 (2009).
- [15] M. Gurbuz, T. Mutuk, P. Uyan, Mechanical, Wear and Thermal behaviors of graphene reinforced titanium composites, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00673-1
- [16] D. W. Jung, J. H. Jeong, B. C. Cha, J. B. Kim, B. S. Kong, J. K. Lee, E. S. Oh, Effects of ball-milled graphite in the synthesis of SnO2/graphite as an active material in lithium-ion batteries, Met. Mater. Int. 17 (6), 1021-1026 (2011).
- [17] A comparison of Carbon Nanotubes and Carbon Nanofibers, Pyrograf products, Inc, An affiliate of Applied surface sciences, Inc.
- [18] K. M. Nam, K. Mees, H. S. Park, M. Willert-Porada, C. S. Lee, Electrophoretic Deposition for the Growth of Carbon nanofibers on Ni-Cu/C-fiber Textiles, Bull. Korean Chem. Soc. 35 (8), 2431-2437 (2014).
- [19] S. J. Jung, S. Y. Park, B. K. Kim, B. Kwon, S. K. Kim, H. H. Park, S.H. Baek, Hardening of Bi-Te based alloys by dispersing B4C nanoparticles, Acta Mater. 97, 68-74 (2015).
- [20] C. Marquez, N. Rodriguez, R. Ruiz, F. Gamiz, Electrical characterization and conductivity optimization of laser reduced graphene oxide on insulator using point-contact methods, RSC Adv. 6 (52), 46231-46237 (2016).
- [21] P. Sharief, B. Madavali, J. M. Koo, H. J. Kim, S. Hong, S. J. Hong, Effect of milling time parameter on the microstructure and the thermoelectric properties of N-type Bi2Te2.7Se0.3 alloys, Arch. Metall. Mater. 2, 585-590 (2019).
- [22] P. Slobodian, P. Riha, R. Olejnik, M. Kovar, P. Svoboda, Thermoelectric properties of carbon nanotube and nanofiber based ethylene-octene copolymer composites for thermoelectric devices, J. Nanomater 2013, 1-7 (2013).
- [23] Q. Lognoné, F. Gascoin, On the effect of carbon nanotubes on the thermoelectric properties of n-Bi2Te2. 4Se0. 6 made by mechanical alloying, J. Alloys Compd. 635, 107-111 (2015).
- [24] B. Feng, G. Li, X. Hu, P. Liu, R. Li, Y. Zhang, Z. He, Improvement of thermoelectric and mechanical properties of BiCuSeO-based materials by SiC nanodispersion, J. Alloys Compd. 818, 15289
Uwagi
1. This work was supported by the research grant of the Kongju National University in 2020.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2aa06d6-768a-464b-a592-241ce389c21b